

Correct Rolling Shutter Distortions From A Single Image

Most mobile phone (CMOS sensor) cameras employ row-wise light acquisition

Camera motion even during short exposure causes local geometric distortions known as the rolling shutter effect

Each image row is associated with a camera pose

Challenges

Lack of multiple images to exploit correspondences

What image features to extract to decode camera trajectory?

Polynomial motion model

For $i \in \{x, y, z\}$,

$$r_i(y) = \alpha_{i0} + \sum_{j=1}^n \alpha_{ij} \left(\frac{y-1}{M}\right)^j$$

M : number of rows $y : \text{row index} \in [1, M]$ $\alpha_{ij}: j^{\text{th}} \text{coefficient for the } i^{\text{th}} \text{axis motion}$

Single Image Rolling Shutter Rectification Vijay Rengarajan*, Carnegie Mellon University

Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

on Computer Vision and Pattern Recognition (CVPR), July 2017