Unrolling the Shutter: CNN to Correct Motion Distortions
Vijay Rengarajan, Yogesh Balaji, and A.N. Rajagopalan, Indian Institute of Technology Madras, Chennai, India

apvijay.github.io/rs_rect_cnn

Lack of multiple images to exploit correspondences

What features to extract from the image to decode camera trajectory?

Existing works use scene-specific algorithms

Urban scenes: Rengarajan et al. (CVPR 2016)
Faces: Heflin et al. (Conf. Biometrics 2010)

Goal
Correct rolling shutter distortions from a single image

Most mobile phone (CMOS sensor) cameras employ row-wise light acquisition

Camera motion even during short exposure causes local geometric distortions known as the rolling shutter effect

Each image row is associated with a camera pose

Challenges

Why regress on motion rather than on the corrected image?

No new or better information in the image is sought
Rolling shutter causes geometric distortions (not photometric)

Training

Generate synthetic rolling shutter images and create image-motion pairs

Urban dataset: SUN, Zurich, Oxford
Face dataset: LFW

1

Our idea

Use a CNN to map the distorted image space to the motion space

CNN input: Rolling shutter image (256x256 RGB)
CNN output: Motion values (15 t samples, 15 r samples corresponding to equally spaced rows)

Fit a polynomial trajectory to get row-wise camera poses
Correct the distorted image using inverse warping

2

RowCoLCNN architecture

Use long rectangular kernels instead of square kernels

Temporal motion information is present along image columns
Information from image rows helps to reinforce row-wise motion

3

Results

1 Most mobile phone (CMOS sensor) cameras employ row-wise light acquisition
Camera motion even during short exposure causes local geometric distortions known as the rolling shutter effect
Each image row is associated with a camera pose

2 Lack of multiple images to exploit correspondences
What features to extract from the image to decode camera trajectory?
Existing works use scene-specific algorithms

Urban scenes: Rengarajan et al. (CVPR 2016)
Faces: Heflin et al. (Conf. Biometrics 2010)

4

We thank for the conference travel grant.

5

Training

Generate synthetic rolling shutter images and create image-motion pairs

Urban dataset: SUN, Zurich, Oxford
Face dataset: LFW

Distorted

Corrected