

Learning Spatio-Temporal Downsampling for Effective Video Upscaling

Xiaoyu Xiang¹ Yapeng Tian² Vijay Rengarajan¹ Lucas Young¹ Bo Zhu¹ Rakesh Ranjan¹ ¹Meta Reality Labs ²University of Texas at Dallas

Motivation

Given an image, how to downsample it into a smaller one?

- o If we directly take one pixel from a region, then the result will be with obvious jigsaws due to aliasing.
- o To avoid these artifacts, we need anti-aliasing filters before downsampling, like bicubic, and gaussian filters.

Now given a video sequence of many images, how do we downsample it?

- We regard video as a 3D *xyt* volume, and propose to use a 3D space-time anti-aliasing filter to downsample it.
- Like what we usually do for an image, we first generate a filtered cube, and then downsample it by striding.
- In this way, we can get a better downsampled output without aliasing in space and time.

Framework

To better retain and recover spatio-temporal details, we design a framework that jointly learns a downsampler and an upsampler that effectively captures and reconstructs high-frequency details in both space and time.

The downsampler includes 3 parts:

- o A space-time anti-aliasing filter
- o A downsampling operation
- o A differentiable quantization layer

For the **upsampler**:

- We adopt 3D convolutions as the basic building block. However, naïve 3D convolution is insufficient.
- So we propose to enhance the temporal correspondences with a deformable temporal modeling network.
- We devise a space-time pixelshuffle module. It rearranges the feature channel elements into both space and time dimensions.

Why our method is better?

Look at this video cube:

GT image/temporal profile ZSM-Output [84] Ou

The result from the commonly used bicubic downsampling and skip frames is not optimal for reconstruction.

While our learned downsampler can keep better temporal textures.

Hence, our reconstruction result has richer details and better motion patterns than previous SOTA method.

Ex	pe	rir	ne	nts
	~ ~			

Downsampler	Params/M	GFLOPs/MP	PSNR	SSIM
CAR [66]	9.896	2305.77	35.96	0.9400
PASA [94]	0.003	6.144	35.37	0.9524
Ours	0.002	0.081	37.35	0.962

Tab 1. Comparison of spatial downsamplers (1×t, 4×s).

Time	Space	PSNR	SSIM
Nearest	Bicubic	28.88	0.9073
Gaus	ssian	37.44	0.9679
STA	A_{no}	39.44	0.9775
STA	A_{soft}	40.40	0.9812
STAA	quant	40.42	0.9811
STA.	A_{ada}	38.13	0.9720

Tab 2. Quantitative comparison of downsampling filters (2 \times t, 2 \times s). The best two results are highlighted in red and blue, respectively.

Application

- o Efficient video storage
- o Blurry frame reconstruction
- o Arbitrary frame rate conversion