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ABSTRACT

We address the problem of camera motion estimation from a single
blurred image with the aid of deep convolutional neural networks.
Unlike learning-based prior works that estimate a space-invariant
blur kernel, we solve for the global camera motion which in turn
represents the space-variant blur at each pixel. Leveraging the cam-
era motion as well as the clean reference image during training, we
resort to a semi-supervised training scheme that utilizes the strengths
of both supervised and unsupervised learning to solve for the cam-
era motion undergone by a space-variant blurred image. Finally, we
show the effectiveness of such a motion estimation network with ap-
plications in space-variant deblurring and change detection.

Index Terms— Camera motion estimation, motion blur, deblur-
ring, change detection, deep neural networks.

1. INTRODUCTION

Inferring camera motion from images is important in many tasks
including robotic navigation, depth estimation, and splicing detec-
tion [1]]. Oftentimes the camera motion is embedded in the captured
image itself in the form of motion blur. With a boom in lightweight
hand-held imaging devices, motion blur has become very prevalent,
and it has been a major confrontation in long exposure photography.

Recent deep learning works [2, 3] consider the default use case
of deblurring due to camera motion where a clean image devoid of
motion blur is preferred by users. These works follow an end-to-end
deblurring learning framework where the camera motion is not esti-
mated at all. We observe that estimating camera motion that caused
the blur has attracting characteristics in that it can be used for differ-
ent applications such as change detection including that of deblur-
ring. Therefore, in this paper, we intend to address the problem of
single-image camera motion estimation, and we provide the applica-
tions of deblurring and change detection as its epilogues.

Classical non-learning based works do deal with camera motion
estimation, but inherently they are tied to a specific application, de-
blurring in the case of [4} 5} |6], and change detection in the case of
[7,18]. In our work, we estimate the motion independent of these ap-
plications, and the user can choose to perform any task that leverages
the camera motion post estimation.

We propose a deep convolutional neural network (CNN) that
solves for the camera motion given a single motion blurred image.
Given the fact that we have access to the ground truth camera motion
as well as clear images during the training phase, we adopt a semi-
supervised learning scheme. Our method benefits from ground-truth
camera motion measurements as an unambiguous cue for supervised
learning, and at the same time, it uses the latent clean image for an
unsupervised prediction of camera motion. During the testing phase,
the network takes in the blurred frame and outputs the camera mo-
tion undergone during the capturing time. The network learns space-
variant blur in the form of inplane camera translations and inplane
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Fig. 1. Our network model utilizes the supervised motion cost as
well as the unsupervised image cost for estimating global camera
motion from a single blurred image.

rotations. The camera motion thus estimated can either be used to
deblur the input image or be used to reblur the paired image to de-
tect changes. A comprehensive diagram of our network and the cost
functions used is provided in Fig.[T}

Related Works There is a vast literature on blind motion deblur-
ring, scene registration, and change detection tasks. Inverting the
blur to estimate the underlying camera motion and the latent image
from a single blurred image is a highly ill-posed problem. Deblur-
ring works in literature can be broadly classified as (a) conventional
approaches and (b) deep learning approaches. Conventional methods
formulate deblurring as a prior-based energy minimization problem
and deploy iterative optimization schemes to solve the underlying
blur and latent image. Earlier works [9} [10] in this category assume
a space-invariant blurring model and approximate the motion using
convolutions. These methods do not capture the space-varying na-
ture of blur caused due to camera rotation that is a very important
aspect of hand-held imaging [[11]. More recent works [4} 15} 6] esti-
mate the global camera motion rather than blur kernels at each pixel
using formulations such as motion density function [4] and transfor-
mation spread function [12].

The other class of works on deblurring is rooted to the current
trend of supervised deep learning models. Initial works [[13} 14} [15]
have shown great success in estimating the blur function thereby aid-
ing in space-invariant deblurring. These models estimate the blur
kernel using the network and perform non-blind deblurring outside
of the network to produce the clean image. Since these methods es-
timate a single space-invariant kernel for the entire image, they can-
not deal with space-varying blur. Following this, the work in [16]
proposes a deep classification network that estimates a parametrized
kernel at each patch of a space-variant blurred image. Recently, there
are networks [2| 3] that perform end-to-end deblurring and skip the
estimation of blur kernels completely. But none of these methods
solve for a global camera motion.

Surveying an area and keeping track of the changes helps in
timely monitoring and assistance. The task of finding changes
between two images become highly challenging when the refer-
ence data collected under smooth conditions are clean and those



collected during the survey have blurry artifacts. Existing works
[7, 8] solve the problem of the blur estimation and change de-
tection from a clean-blurred image pair in a single optimization
framework, whereas [17] proposes a deep-network-based change
detection scheme given a pair of clean images devoid of any motion
artifacts.

Contributions We propose a convolutional neural network that
estimates from a single motion blurred image, the global camera mo-
tion that causes the underlying space-variant blur. To the best of our
knowledge, this is the first attempt to estimate the global camera
motion from a space-variant blurred image using a semi-supervised
learning scheme. We also show two applications that leverage the
estimated camera motion: single image deblurring, and change de-
tection given a reference and blurred image pair, with appropriate
comparisons against existing works.

2. BLUR FORMATION MODEL

When a camera moves during the exposure time, different warped
versions of the scene are accumulated by the sensor resulting in
a blurred image. Hence, a space-variant blurred image can be
represented as a weighted sum of warped instances of a clean im-
age (which is the image as captured without any motion) with the
weights corresponding to different camera poses along its trajectory
[12} 16 14].

B =Y wiHi(L) (1
k=1

where B is the observed blurred image, L is the corresponding la-
tent clean frame, the scalar wy, represents the fraction of time that
the camera has spent in the k" camera pose among the |S| cam-
era poses, and H(-) defines the homography operator that warps
the input image to the k" pose. The camera pose space S is a 3D
space consisting of inplane translations and rotations discretized in a
manner such that a displacement of at least one pixel exists between
two camera poses. Analogous to the point spread function (PSF), we
have Z‘,ill wr = 1 corresponding to energy conservation. As can
be observed, the camera motion and the clean image are associated
together in the formation of the blurred image. While it is tempting
to get back the clean image from the blurred one, estimating cam-
era motion would possibly serve many applications. Yet we do not
choose to ignore the above association in that we employ the latent
image corresponding to the blurred image in our semi-supervised
training of a neural network that learns to map the blurred image to
camera motion.

3. NETWORK ARCHITECTURE AND TRAINING

The goal is to design a neural network that takes a single blurred
image as the input and provides the camera motion as the output.
The input RGB image is of the form of a 3D tensor, and the output
is the vector Q@ = [wi,...,w)s|]” corresponding to the weights of
the camera poses.

3.1. Network Architecture

Inspired by Alexnet [18], our network consists of convolutional lay-
ers that extract features followed by fully-connected (FC) layers that
map them to the camera motion. Each convolutional layer is fol-
lowed by a non-linear rectified linear unit activation (ReLU) and a
batch-normalization unit (except for the first layer). The first FC

layer is followed by a Tanh unit, and the output from the last FC
layer is subsequently passed through a soft-max layer restricting the
final output values to lie in [0, 1] 15T to obtain the camera motion vec-
tor ﬁ, since the pose weights can be viewed as a probability density
function indicating the fraction of time that the camera spent in each
pose during motion. The complete network architecture with the
sizes of feature maps at each layer is shown in Fig. |2} The filter size
is fixed as 5 X 5 in all convolutional layers.
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Fig. 2. Network architecture Conv@m,n represents convolution
with n X n filter size, and m output feature maps. S2 denotes down-
sampling by a factor of 2.

We adopt a semi-supervised learning scheme with a supervised
motion cost and an unsupervised image cost.
Supervised cost Since the camera poses are ordered at the end of
the network, the network is entailed to predict the correct poses and
its associated weights. Therefore, we use an Lo-norm loss (mean
square error) on the estimated camera motion and the original mo-
tion corresponding to the blurred image. In addition, based on the
fact that the camera sees only a sparse set of poses from the entire
camera pose space, we also impose a sparsity constraint on the esti-
mated camera motion using an L, penalty. Hence, we define the
following:

Emse = ||§ - Qom’g“%a Espa'r = HﬁHl (2)

These two loss functions are combined to form the supervised cost:
Esup - )\lEmse + A2E‘spa'r‘- (3)

Unsupervised cost As noted in Section [2| we propose to exploit
the association of the latent image and the camera motion during
training. Also, we have access to the clean image along with the
camera motion for every blurred image during training. Hence, we
define an unsupervised cost based on the image error that facilitates
better convergence of the network as follows:

E
Bunsup = As||B = > @xHr(L)]3. 4

k=1

This cost represents the reblurring error that results when the clean
image is blurred using the estimated camera pose weights and com-
pared against the original blurred image B. Writing the above cost
in terms of the network output 2, we have

Eunsup = )\3||b7A§H§ (5)

Here, b is the lexicographically ordered column-vector of the blurred
image B, Ay g/ is a matrix having the k" column as the lexico-
graphically ordered warped clean image L warped by the homogra-
phy operator Hj,, and thus AQ represents weighing each column of
A with the values from € producing the blurred version of the clean
image.



3.2. Training Details

We prepared the training and validation datasets by synthetically
blurring the clean images from PASCAL VOC dataset [19]. We first
resized the images to 128 x 128 and then generated the blurred im-
ages using a 3D camera motion with inplane translations (¢, and t,)
ranging from [—2 : 2] pixels with a step size of one pixel, and in-
plane rotation r, € [—5 : 5]° with a step size of 0.5° that amounts to
a pose space containing |.S| = 525 poses. Note that even this small
motion range can create a large amount of space-varying blur for a
128 x 128 image. A total of 200k random connected camera mo-
tions are generated, and by picking a random clean image for each
of them, we have the training dataset size of 200k. The validation
set is also created in a similar manner. We used Torch for training
and testing with the following options: ADAM optimizer with mo-
mentum values 81 = 0.9 and B2 = 0.99, learning rate of 10_4,
batch-size of 64, A1 = 0.01, A\ = 0.1, A3 = 1, and the total cost as
Esup + Eunsup-

Gradient during backpropagation The gradients for the Lo and
L norms for the supervised cost (3) are employed using the default
options in Torch, and the gradient for the unsupervised cost (3) is
calculated as follows:

Bunsup = b b —b"AQ — Q" ATb + QT AT AQ (6)
OB unsup/00 = —20" A+ 207 AT A )

For each pair of blurred and clean images, the matrix A is formed on-
the-fly using GPU-based warping operations while calculating the
gradient in (7) during backpropagation.
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Fig. 3. Effect of cost functions during training and validation.

Effect of cost functions We checked the effect of the cost functions
Foup and Eypsup in (ED, and @, respectively, on the convergence of
our proposed network during training. Fig. [3]shows the training and
validation error curves. Using just the supervised motion cost has
convergence issues, but a combined cost converges faster. The cam-
era motion cost alone constrains the solution space to a single value
instead of the correct motion. This is due to the softmax and L1
penalty layers which favors sparse solutions. When the additional
unsupervised cost is used, the motion estimated has to not only fol-
low the sparse constraint but should also be able to reproduce the
blurred image from the clean input image. This helps to retain spar-
sity of the motion, and at the same time, produces a motion similar
to the ground truth.

4. EXPERIMENTS

Given a blurred image, the camera motion can be obtained as a
weight vector corresponding to the camera poses by forwarding the
image through the trained network. We provide a quantitative metric
for our estimated camera motion over that of the ground truth (GT)
using Normalized Cross Correlation (NCC), and we also discuss the
applications of deblurring and change detection.
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Fig. 4. Blur kernels produced at different pixel locations using (a)
ground-truth (GT) motion and (b) estimated motion. (c) Normalized
cross-correlation (NCC) for ten trajectories from dataset [11]].
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Fig. 5. Deblurring comparisons with the latest deblurring work [2]].

Motion estimation We tested the efficacy of our network to cor-
rectly predict the camera motion from a single blurred frame. For
this, we took 10 different GT camera motions from the dataset in
[T1] confined to inplane rotation and translations. These motions
were used to blur clean images from the test set of PASCAL VOC
dataset. The blurred images were then passed through our network
to predict the camera motion. To check the consistency of predic-
tion, we used the NCC metric. The camera motion can be projected
to the 2D image plane at different locations to obtain the blur kernel
at these locations. We used GT and estimated motion to generate the
blur kernels at different pixel locations. The estimated and GT ker-
nels are then matched using NCC and averaged over many locations.
An example of blur kernels produced with GT and estimated motion
are shown in Figs. [{a) and (b), respectively. Fig. fc) depicts the
NCC over the ten different GT and estimated camera motions. All
these values are close to one indicating that the estimated motion
is able to replicate the blur kernels similar to that produced by GT
motion at all pixel positions.

Deblurring Once the camera motion is estimated, a non-blind de-
blurring is performed to obtain the deblurred image. We use L
prior on the image gradient for regularization. The latent image L
is obtained by min;{||b — M\l||§ + AV!|1} where M is formed
from Q. Let My warps the image [ using a single homography,
then M is the convex combination of all Myp.’s resulting in a blur
matrix, M\:Z & Wx M. Each row of M\ addresses the blur at a cor-
responding pixel location. We use ADMM-based approach [20] to
solve for the latent image. Real examples on image deblurring from
the camera motion estimated by our network are provided in Fig[5]
Comparison with the latest end-to-end deblurring work is pro-
vided in Fig.[5|b). It can be observed that our method works on par
with [2]. We also provide a synthetic example in Fig.[] The ref-
erence clean image Fig. [[a) is blurred with the synthesized camera
motion Fig. [f[d) to get the blurred input in Fig. [6{b). This blurred
image is forward passed through our network to obtain the camera
motion in Fig. [[e) which is close to the ground truth in Fig. [[d).
Our deblurred result is provided in Fig. [6fc).
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Fig. 6. Deblurring (a) Clean image; (b) blurred image synthesized using the camera motion in (d); (c) deblurred image using the estimated
camera motion (e) using our network; (f) The 2d plot of the ordered camera poses and the corresponding weights for the ground-truth and

estimated camera motions in (d) and (e).

(@) I (d) I

(c) Direct differencing

d 2 [21- (f) Our output

(e) [Zh

Fig. 7. Change Detection (a) Clean reference; (b) blurred occluded image; (c) direct difference of (a) and (b); (d) result obtained by deblurring
(b) using [2] followed by registration and differencing with (a); (e) result obtained from [[7]; (f) motion estimated from (b) using our network

applied to (a) and then differencing;

Change Detection Given an image pair with one clean (Fig. [7(a))
and another blurred (Fig. b)), our aim is to detect changes between
the pair. A simple differencing and thresholding will lead to many
unwanted changes to be detected as in Fig. [7c) due to the blurry
artifact in the second image. We deblurred the second image us-
ing [2], aligned it with the clean image using SIFT correspondences
[21], then subtracted from Fig. a), and finally thresholded to ob-
tain Fig. [7(d). The work in [7] does a joint alignment and change
detection, the result of which is provided in Fig. [7e). Finally, for
our output, we used the camera motion estimated from our network
and forward blurred the clean reference. The result is then subtracted
from Fig.[7(b) and thresholded to obtain the result in Fig. [7[f). From
the results, it can be seen that our method detects the changes cor-
rectly compared to other methods. Any artifacts or edge smoothen-
ing in the deblurring phase or any misalignments in the alignment
phase result in spurious changes as in Fig. [7(d). Similarly, the com-
bined registration and alignment of [7] highly depends on the opti-
mization scheme, and is a time consuming process. We also pro-
vide quantitative metrics in Table[I] We took 100 clean images and
added occlusions at random positions. These were then blurred us-
ing global camera motions. Comparisons as in Fig.[7]were conducted
and the obtained changes were compared with the ground truth. We
report the average accuracy using Percentage of Correct Classifica-
tion (PCC), Jaccard Coefficient (JC) and Yule Coefficient (YC) mea-
sures [22]]. We also computed the total execution time (excluding the
absolute differencing and thresholding part) for our method and all
the comparison methods. The result is provided in Table 2] From
Tables[T]and 2] it can be observed that our method is fast, and at the
same time, it detects changes comparable to the ground truth.

More details of the quantitative measures, additional results, and

Table 1. Quantitative comparison for change detection.

Methods PCC JC YC

Ours 99.31  0.6808  0.7488
I [2)-11 89.50  0.1198  0.1193
17l 94.87  0.2613  0.2731

T/F: True/False, P/N: Positive/Negative, Percentage of correct classification PCC =
(TP+TN)/(TP+TN+FP+FN), Jaccard coefficient JC = TP/(TP+FP+FN), and Yule
coefficient YC = |TP/(TP+FP) + TN/(TN+FN) - 1]. The higher are the values, the
better is the method.

Table 2. Computational time in seconds for change detection.

Methods  Ours 7 I3 [2]-11
(GPU+Torch) (CPU+MATLAB) (GPU+Torch; MATLAB™)
Steps Motion Estimation: 0.13 9.85 Deblurring [2]: 3.02
Forward Blurring: 1.68 Alignment*: 0.23
Total 1.81 9.85 3.25

our network limitations are provided in the supplementary material.

5. CONCLUSIONS

We proposed a deep network to solve for the global camera motion
from a single blurred image. The estimated global motion can deal
with space-variant blurs caused by camera rotation in addition to
translations. We showed applications of global camera motion esti-
mated by our network in single-image deblurring as well as change
detection under blur. Quantitative analysis and run time comparisons
with other competing methods for change detection favored our pro-
posed method.
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