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Image Registration and Change Detection under
Rolling Shutter Motion Blur

Vijay Rengarajan, Ambasamudram Narayanan Rajagopalan, Rangarajan Aravind, and Guna Seetharaman

Abstract—In this paper, we address the problem of registering a distorted image and a reference image of the same scene by
estimating the camera motion that had caused the distortion. We simultaneously detect the regions of changes between the two
images. We attend to the coalesced effect of rolling shutter and motion blur that occurs frequently in moving CMOS cameras. We first
model a general image formation framework for a 3D scene following a layered approach in the presence of rolling shutter and motion
blur. We then develop an algorithm which performs layered registration to detect changes. This algorithm includes an optimisation
problem that leverages the sparsity of the camera trajectory in the pose space and the sparsity of changes in the spatial domain. We
create a synthetic dataset for change detection in the presence of motion blur and rolling shutter effect covering different types of
camera motion for both planar and 3D scenes. We compare our method with existing registration methods and also show several real
examples captured with CMOS cameras.

Index Terms—Rolling shutter, motion blur, change detection, image registration, aerial imaging
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1 INTRODUCTION

IMAGE registration [1] is the process of spatially aligning
two images of the same scene and is critical for detecting

changes in many application areas including aerial and
satellite imagery. Earlier works have handled simple global
translational and rotational differences [2], [3]. The process
could be feature-based or intensity-based. The former class
of techniques (such as [4]) first detects interesting points
called feature points in both the images and use them to
geometrically align the images by an affine or a projective
transformation. Intensity methods such as [5] commonly
employ correlation-based matching. Some of the problems
encountered in image registration include the presence of
motion blur due to camera motion, illumination changes
due to the temporal change between captures, and the
presence of 3D objects in the scene which poses issues with
using a global homography.

In this paper, we address the problem of two-image
registration and change detection in 3D scenes in the pres-
ence of camera motion for both global and rolling shutter
cameras. We consider two important challenges specific to
relative motion between the scene and the camera, namely
motion blur and rolling shutter effect. These effects in-
troduce additional level of complexity to the problem on
hand. In a typical camera using CCD sensors, all pixels
are exposed at the same time; these cameras are called
global shutter (GS) cameras. They produce motion blur
(MB) in the captured image when there is camera motion
during exposure. Contemporary CMOS sensors employ an
electronic rolling shutter (RS) in which the horizontal rows
of the sensor array are scanned at different times. This
behaviour results in additional distortions when capturing
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Fig. 1. Exposure mechanism of GS and RS cameras.

dynamic scenes and when imaging from moving cameras.
Fig. 1 shows the mechanism by which sensors are exposed
in RS and GS cameras. A GS camera exposes all the pixels
at the same time for a time period te. Fig. 1(a) illustrates this
operation by showing same start and end exposure times
for each row of the sensor array. The M rows of an RS
camera sensor array, on the other hand, are not exposed
simultaneously. Instead, the exposure of consecutive rows
starts sequentially with a delay td as shown in Fig. 1(b).

The interplay between the rolling shutter effect and
motion blur in an RS camera depends on the row exposure
time te and the delay between the start of exposure of
first and last rows (M − 1)td. Fig. 2 shows three different
scenarios corresponding to te � (M − 1)td, te ≈ (M − 1)td
and te � (M − 1)td for a sensor with td = 39.96µs in
a 30fps camera having 834 scanlines for M = 800 rows
(corresponding to 1125 scanlines for 1080 rows [6]). Though
the time delay between rows in all the three scenarios is
same, the amount of blur that each row experiences and
the amount of intersection among the blur of different rows
varies with respect to the row exposure time. For ease of
illustration and understanding, we consider only x and
y translational motion, since the motion about optical z-
axis affects different image areas differently. In case (a),
the number of camera poses that each row experiences is
very low due to low exposure time, and hence the image is
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Fig. 2. Distortions in RS cameras. Top: Three types of distortions based
on the amount of row exposure. Bottom left: Plot of normalized cross-
correlation between kernels from top and bottom image regions for
different exposure times. Bottom right: Sample top and bottom blur
kernels for different distortions.

devoid of motion blur even though the RS effect is present
due to the inter-row delay. In case (b), each row experiences
different type of motion with sufficient exposure period to
exhibit blur producing what we call as an RSMB image.
In case (c), the row-exposure time dominates the total row
delay, and every row experiences almost the same camera
motion barring a few camera poses, and thus the resulting
image tends to be a GSMB image as if the image is captured
using a GS camera. Fig. 2 shows the variation in normalized
cross-correlation between the local blur kernels located in
top and bottom regions of the image. The plot can be
divided into three regions corresponding to RS, RSMB, and
GSMB. In the RS and GSMB regions, the two blur kernels
are correlated very well, since in the RS case they are mere
impulses (though shifted), and in the GSMB case, the camera
motion experienced by the top and bottom regions over the
long exposure is almost the same. The middle region of the
plot wherein the local blur kernels are different (even for 2D
translational motion) corresponds to the RSMB case.

In an earlier work [7], we tackled the problem of change
detection in planar scenes in the presence of RS and MB.
In this work, we develop a general model to address both
RS and MB artifacts in 3D scenes that is equally applicable
to both GS and RS cameras. Instead of the customary
rectify-difference pipeline, we follow a distort-difference
pipeline, in which we first distort the reference image to
register it with the observed image followed by change
detection. We follow a layered scene model [8], [9] wherein
the image of a 3D scene is deemed to have been formed
by stacking a number of fronto-parallel layers at different
depths. We assume that the reference image is captured
under conducive conditions and is free from RS and MB
artifacts. For example, aerial images captured from fast-
moving aircrafts will have distortions, while the reference is
captured beforehand without any distortions from a satellite
or a steady flying vehicle. Even though there are other

factors such as changes in camera colour characteristics
and sunlight conditions that could affect change detection
methods, considering all possible artifacts is beyond the
scope of our work. We have primarily concentrated on the
distortions specific to RS camera motion as these are equally
important and prevalent. Our method could be plugged into
a complete end-to-end framework that attempts to tackle
all issues. We would like to mention here that though we
had pointed out one important application (aerial imagery),
the theory developed in our work is general, and can be
extended to other applications as well including mosaicing,
super-resoution, and tracking, wherein the assumption of a
global warp would fail in the case of RS motion and row-
wise warping becomes imperative.

1.1 Related Works

In this section, we discuss works related to motion blur,
rolling shutter, and 3D scene modelling.

Motion Blur: The study of motion blur is a clas-
sical problem in image processing and a large corpus of
works exists that deals with the removal of motion blur.
The motion blur is modelled as a set of projective homo-
graphies in a number of works [10], [11], [12], [13] and
different optimization techniques are employed for deblur-
ring such as gradient-based priors [10], [13] and modified
Richardson-Lucy algorithm [11]. Information from inertial
sensors are also used to estimate the camera poses such
as in [14]. The work of [15] estimates homographies in the
MB model posed as a set of image registration problems.
Multiple images are employed in [16] to perform joint
alignment, deblurring, and resolution enhancement, while
a high sparsity-pursuit regularisation is employed in [17] to
preserve salient edges that aid in kernel estimation during
single image deblurring. A joint method to estimate scene
depth and to remove MB through a unified layer-based
model is proposed in [18] using a single blurred image. In
our earlier work [19], we proposed a method to estimate
camera motion in the presence of motion blur. In particular,
we dealt with very large images where we leveraged the
fact that the camera motion is same in all subimages inside
the very large image. In this work, we do not deal with very
large images and restrict ourselves to images captured using
mobile phone CMOS cameras.

Rolling Shutter Effect: In [20], which is one of the
first works that deals with RS rectification, a global transla-
tory motion is estimated between two successive frames of
a video, and the motion of every row is interpolated using
a Bézier curve, which is then used to rectify the RS effect. A
flow-based motion vector approach is taken to estimate the
translatory motion. The RS wobble is removed from a video
in [21] by posing it as a temporal super-resolution problem.
Intra-frame motion is modeled as a super-resolved version
of inter-frame global motion. A rotation-only camera motion
for 3D scenes is modeled in [22] for RS video rectification.
Key-rows are defined in every frame for which the camera
motion is estimated using nonlinear least squares based on
feature correspondences. The motion for remaining rows
are interpolated using spherical linear interpolation. The
method is also applicable for translatory camera motion for
planar scenes. An algorithm based on homography mixtures
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is proposed in [23] in which direct linear transform (DLT) is
used to remove RS effect from videos. After locating feature
matches between two frames, a modified DLT is used to
estimate the camera motion in which the homography of a
row is defined as a weighted average of that of pre-selected
key-rows. A unified approach to estimate both RS and MB
is formulated in [24], but a uniform velocity of the camera
is assumed during the exposure of a video frame. In [25],
information from multiple sensors of an RS camera is fused
to estimate camera motion by fitting a continuous B-spline
model. This framework is applied to simultaneous localisa-
tion and mapping. The work of [26] performs joint removal
of MB and RS effect. The blur kernels are estimated across
rows using which a polynomial-based camera trajectory is
fitted, and a latent image is estimated using the trajectory.
The downside of the work are the assumption of known
inter-row delay time td of the RS camera and the consider-
ation of only 2D out-of-plane rotational or 2D translational
camera motion. Accurate estimation of td requires the use
of imaging a flashing LED as employed in [22].

3D Scene Modelling: Modelling the 3D scene as
an amalgamation of many flat layers situated at different
depths is common in literature [8], and is used in areas
including computational photography [9] and motion blur
modelling [27]. There also exist works that locally adapt
homographies for 3D scene registration. A piecewise image
registration method is followed in [28] to handle 3D scenes,
where the geometry of the scene is approximated by a piece-
wise continuous surface. In [29], region correspondences are
determined to register 3D objects in the scene. To tackle the
3D nature of the scene, the image is divided into a number
of subimages in [30] using Voronoi subdivision, and the
subimages are registered using feature correspondences. A
hybrid model of homography and content preserving warps
to handle parallax and local distortions is followed in [31]
for the application of mosaicing. As-projective-as-possible
warping is employed in [32] to register and mosaic two
images of 3D scenes. In [33], a global homography is used to
coarsely align the two images, and local homographies are
used to register image blocks.

1.2 Contributions

The main contribution of our work is the development of
a combined image formation model to take care of the
coupled nature of RS and MB effects. A unified framework
to jointly perform image registration and change detection
using a sparsity-based optimisation problem is presented. A
layered registration approach is followed to consider the 3D
nature of the scene.

Previous works on RS rectification [22], [23] have consid-
ered only the RS effect ignoring the presence of MB, and also
estimated only a coarse row-wise camera motion through
interpolation. We estimate dense camera motion through all
rows of an image considering both RS and MB. Works that
have dealt with both RS and MB, have their own restrictions,
such as the assumption of uniform camera velocity [24] and
the assumption of 2D parametric camera motion [26]. In this
work, we deal with both RS and MB under a single roof
without making any assumptions on camera velocity and
on camera motion path parametrisation.

We extend our own work [7] in the following ways. In
[7], we framed our formulation of change detection for only
planar scenes dealing with RS and MB. In this work, we
extend and generalise the image formation model and the
change detection algorithm for 3D scenes. The experimental
section has been expanded to include quantitative compar-
isons with the existing methods using a synthetic dataset
created specifically for change detection in the presence of
RS and MB, and change detection in both planar and 3D
scenes with comparisons. In the supplementary material,
we have included synthetic experiments on camera motion
estimation for uniform and nonuniform trajectories.

2 IMAGE FORMATION MODEL

In the following discussion, we first briefly describe the
combined rolling shutter and motion blur (RSMB) model
for planar scenes from our work [7], and then we gener-
alise it for 3D scenes by following a layered approach. We
then proceed to develop an algorithm for change detection,
where we first register the background layer by estimating
its camera motion and then register other layers while
simultaneously detecting changes, if any.

2.1 RSMB Imaging in Planar Scenes

In a rolling shutter camera that is imaging M rows, the ith
row of the sensor plane is exposed during the time interval
[(i − 1)td, (i − 1)td + te] for 1 ≤ i ≤ M . Here te is the
exposure time of a row and td is the inter-row delay time
with td < te (Refer Fig. 1). The total exposure time of the
image is given by Te = (M − 1)td + te. For the camera path
p(t) representing 6D camera motion, the ith row is blinded
to the whole time except for (i− 1)td ≤ t ≤ (i− 1)td + te.

Let f be the image captured by the RS camera with no
camera motion, and let g be the distorted RSMB image
captured when the camera trajectory is p(t). Then, each
row of g is an averaged version of the corresponding rows
in warped versions of f due to the camera motion in its
exposure period. We have

g(i) =
1

te

∫ (i−1)td+te

(i−1)td
f
(i)
p(t) dt, for i = 1 to M, (1)

where f
(i)
p(t) is the ith row of the warped version of f due to

the camera pose p(t) at a particular time t.
The discretised model with respect to a finite camera

pose space S is given by

g(i) =
∑
τk∈S

ω(i)
τk

f (i)τk , (2)

where S = {τ k}|S|k=1, |S| denotes the cardinality of S , f (i)τk
is the ith row of the warped reference image fτk due to the
camera pose τ k. Each element of the pose weight vector ω(i)

τk

represents the fraction of time that the camera stayed in the
pose τ k during the ith row exposure. When the exposure
times of f (i) and g(i) are same, then by conservation of
energy, we have

∑
τk∈S ω

(i)
τk = 1 for each i.
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2.2 RSMB Imaging in 3D Scenes
In this subsection, we explain the generalization of the
image formation model in (2) to 3D scenes by following the
layered approach.

Let us consider L depth layers in the scene, and let the
set L = {`}L`=1 index the layers. The relative depth of each
layer is given by {d`}L`=1, where d1 is the layer closest to
the camera and dL is the layer farthest from the camera (i.e.
the background layer). These values are normalised with
respect to the background layer so that dL = 1, and di > dj
for i > j. During the exposure of the scene, the layer `
could possibly be masked by the layers {`′}`−1`′=1 at the image
plane of the camera. The mask at each layer depends on the
homography due to the camera pose at that layer since the
motion depends on depth.

Let α(τk,`) be the object mask of a layer ` at camera pose
τ k. This variable indicates where the objects are present at a
particular layer.α(τk,`) will be 1 for the pixels where objects
are present (i.e. where the layer could possibly contribute to
the final image) and 0 otherwise. Let β(τk,`)

denote the final
layer mask that indicates the actual contribution of a layer
to the final image. We have

β(τk,`)
= α(τk,`)

`−1∏
j=1

α(τk,j), (3)

where α(τk,j) is the complement of the object mask indicat-
ing the occlusion of a layer from being seen at the image
plane due to the layers in front of it. The above discussion
is valid for each row of the distorted image. Hence the
distorted image resulting from all the camera poses is given
by

g(i) =
∑
τk∈S

ω(i)
τk

L∑
`=1

β(τk,`)
f̂
(i)
(τk,`)

, for i = 1, . . . ,M. (4)

Here f̂ represents the complete scene information at each
layer, i.e. f̂(τk,`) is the image seen by the camera if it was the
only layer present in the scene. Note here that although the
camera poses are same for all layers in a particular row, the
actual warp experienced by each layer is different based on
its depth.

In (4), let f
(i)
(τk,`)

= β(τk,`)
f̂
(i)
(τk,`)

represent the disjoint
layer image for a particular pose τ k at layer `. Thus, the
distorted image can be written as

g(i) =
∑
τk∈S

(
ω(i)
τk

L∑
`=1

f
(i)
(τk,`)

)
. (5)

The distorted image is thus represented as a weighted sum
of warped images from all the layers. It can be equivalently
expressed as an image formed by collecting images layer by
layer and fusing them as given in (6) below.

g(i) =
L∑
`=1

∑
τk∈S

ω(i)
τk

f
(i)
(τk,`)

 (6)

This is a neat extension of our planar RSMB framework in
[7] to 3D scenes. During depth inference (layer assignment),
some pixels (at edges) could embed information from more
than one depth layer. However, this issue is not significant

so long as the blur is not severe in RSMB. The planar scene
model in (2) is a special case of (6) when L = 1, the only
layer being the background layer. Our model neatly encom-
passes both GS and RS camera acquisition mechanisms with
and without MB. If ‖ω(i)‖0 = 1, then there is only one active
pose for each row, and thus the model in (6) corresponds to
the RS-only framework. If ω(i) is same for all i, then the
model represents global shutter cameras. With ω(i) = ω(j)

for all i, j, ‖ω(i)‖0 = 1 represents the GS-only case, while
‖ω(i)‖0 > 1 represents the GSMB model.

2.3 Change Modelling
The relationship (5) between the reference image and the
distorted image due to camera motion accounts only for
the camera motion and does not account for actual changes
in the scene. We model any new objects or changes in the
scene as an additive component. Thus, the distorted image
is given by

g(i) =
∑
τk∈S

ω(i)
τk

L∑
`=1

f
(i)
(τk,`)

+ χ(i), for i = 1, . . . ,M, (7)

where χ(i) is the change vector which contains nonzero
values in pixels where there are changes in the distorted
image with respect to the reference image. Collecting all
rows as an image, {χ(i)}Mi=1 represents all the changes.
Segmenting {χ(i)}Mi=1 itself into different depth layers is not
handled here, since it is more aligned with the application of
single image depth estimation. In our case, χ(i) incorporates
changes in all the layers.

The linear combination of different warps of the image
in (7) can be expressed in matrix-vector multiplication form
as

g(i) =
L∑
`=1

F
(i)
` ω(i) + χ(i) (8)

where the columns of F
(i)
` contain the rows of warped

versions of the reference image at layer ` and each column
gets a weight value from ω(i). Upon rearranging,

g(i) =
[∑L

`=1 F
(i)
` I

] [ω(i)

χ(i)

]
:= B(i)ξ(i) (9)

The matrix B(i) has two parts, the first one being the
collection of all warps of the reference image within the
pose space S , and the second part being the identity matrix
to represent the location of the changes. The first part of ξ(i)

weights these warps and the second part of ξ(i) weights the
identity matrix (i.e. the values for the changed pixels). To
stack up the columns with warps, the depth map of the
scene must be known so that a homography can found
out for each depth layer in the scene. If the depth map of
the scene is known, we can detect changes in the distorted
image by solving for the camera motion and the change
vector weights in (9). As this problem is under-determined,
we minimise the following energy to solve for the camera
motion and the changes jointly:

min{E(ξ(i)) = ‖g(i) −B(i)ξ(i)‖22 + λ1‖ω(i)‖1
+λ2‖χ(i)‖1} with ω(i) � 0, (10)
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where λ1 and λ2 are non-negative regularisation parameters
and � denotes non-negativity of each element of the vector.
The first term in (10) imposes the photometric constancy
constraint accounting for camera motion and the change,
while the `1 norm is used as the prior on the camera motion
and the region of changes to encourage sparsity. We observe
that (i) the camera can move only by a small amount in
the whole space of 6D camera poses, and (ii) the number
of changed pixels is sparse in every row in the spatial
domain. We note that (ii) indirectly relates to the amount of
environmental changes between the two time of captures. To
enforce different sparsity levels on the camera motion and
the changes, we use two `1 regularisation parameters with
different values. We also note that the camera pose weights
represent the fraction of time for camera poses, and hence
we also impose a non-negativity constraint on ω(i).

If the depth map of the scene is not known, which is the
case in most scenarios, it is not possible to warp different
layers according to their depths and stack up the columns
of B(i). Hence, we follow a layered registration approach
in which we start by registering the background layer of
the distorted image with the reference image by estimating
the camera motion and changes, and then registering the
changed regions one-by-one to other layers, thereby detect-
ing the actual changes as regions which are not registered to
any of the layers. The procedure is enumerated as follows:

1) Registration of background layer : Section 2.3.1
2) Segmentation of changed regions : Section 2.3.2
3) Detection of final changes : Section 2.3.3

2.3.1 Registration of Background Layer
To register the background layer, we rewrite the formulation
in (9) with respect to only the background layer (i.e. ` = L).
The information in all the remaining layers are accounted as
change.

g(i) =
[
F

(i)
L I

] [ω(i)
L

χ
(i)
L

]
:= B

(i)
L ξ

(i)
L (11)

The vector ω(i)
L provides weights to the warps of the

background layer due to the camera motion. The change
vector χ(i)

L contains both the actual changes between the
two images and the changes due to misregistration of the
image in other depth layers {`}`6=L, since the applied warp
and the actual warp in that layer are different. Thus, the
changes with respect to the background layer χ(i)

L subsumes
the actual changes at all layers, χ(i), and the nonzero pixels
located in other layers,

∑L−1
`=1 F

(i)
` ω

(i).

χ
(i)
L = χ(i) +

L−1∑
`=1

F
(i)
` ω

(i) (12)

We formulate and solve the following optimisation prob-
lem to obtain the camera motion and the change vector for
the background layer.

(ω
(i)∗
L ,χ

(i)∗
L ) = arg min

ωL,χL
‖g(i) −B

(i)
L ξ

(i)
L ‖22 (13)

+ λ1‖ω(i)
L ‖1 + λ2‖χ(i)

L ‖1 subject to ω(i)
L ≥ 0

The estimated vector ω(i)∗
L provides weights for the camera

poses in S . The nonzero pixels in χ(i)∗
L correspond to the

changes in the image with respect to the background layer.
We modify the nnLeastR function provided in the SLEP
package (Liu et al. [34]) to account for the partial non-
negativity of ξ(i)L and solve (13). Instead of using the same
search space S for all rows, we adapt the space for every
row as will be discussed in Section 2.4.

2.3.2 Segmentation of Changed Regions

Solving (13) gives an image {χ(i)∗
L }Mi=1 that contains both the

non-background layers and the actual changes in the dis-
torted image, but only the regions which are not present in
the reference image should be detected as final changes. To
mark the regions of changes from {χ(i)∗

L }Mi=1, we follow the
thresholding algorithm in [35], which calculates a threshold
based on the entropy of the histogram. This algorithm has
been shown to perform better than other thresholding meth-
ods [36]. After applying the threshold, to deal with noise-
like objects, we perform connected component analysis and
eliminate components which are smaller than a fixed size.

The segmented regions are not smooth and continuous,
in general. Due to the homogeneous regions present inside
the objects, the changes detected may contain holes in them.
Before trying to register each object, we need to extract
each object separately. We determine the distance transform
image of the resulting object layer image. Distance trans-
form assigns a value for each pixel based on its distance
from the nearest black pixel. We then threshold the distance
transform image, and create a binary image. The pixels
which have distance transform values less than a preset
threshold (six for 384x256 image) are assigned a value of
one, and the rest are assigned zero. The resultant image has
closed holes corresponding to unregistered objects. We then
perform hole filling and eroding operations to arrive at a
binary image containing all the objects without any holes in
them. We extract these individual object regions using a sim-
ple connected component approach. We name these binary
object regions {χ̂p}Pp=1 and extract regions containing the
objects from the distorted image g as {gp}Pp=1 = {g·χ̂p}Pp=1,
where P is the number of extracted object regions.

2.3.3 Detection of Final Changes

We now aim to register each of these objects {gp}Pp=1 with
the reference image. If the registration of an object is not
successful, then the corresponding region is considered a
change. While it is possible to register each extracted object
region from the distorted image with the reference image by
estimating the camera motion for its rows anew, it is wiser
to adopt a simpler procedure which uses the following facts
for a particular row i: (i) both the background layer and all
other layers in that row are affected by the same camera
motion p(t), (i − 1)td ≤ t ≤ (i − 1)td + te, and (ii) the
pose weight vector ω(i)

L for all layers remains unaltered,
since the exposure period for all layers is same. Even if
the camera motion is same, a single camera pose affects
points at different layers differently. As a homography, it
pertains only to a plane in the scene. But if we know the
rotations and translations observed on the image plane for
a particular layer due to camera motion, then we can arrive
at the set of rotations and translations observed for another
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layer. Rotations remain the same irrespective of the depth of
the layer, while translations scale with respect to depth.

Consider a changed region gp which spans a sequence
of rows m ≤ i ≤ n. The corresponding search spaces
are {S(i)}ni=m and the estimated weight vectors for the
background layer are {ω(i)∗

L }ni=m. Though the region of
change is not registered at the background layer using the
poses in the tuples {(S(i),ω(i)∗

L )}, a scaled space containing
scaled translational poses S(i)` would register it correctly at
layer `, if it is present at depth d` in the reference image. For
a pose τ (i)

k equivalently represented by image plane mo-
tion (txL , tyL , sL, rxL , ryL , rzL)

(i) at the background layer,
we determine the pose vector (tx` , ty` , s`, rxL , ryL , rzL)

(i)

for the relative depth d` using the following relation [37]:
s` =

d`
ρ , tx` = (ρ − d` + 1)txL/ρ, ty` = (ρ − d` + 1)tyL/ρ,

where ρ = d`+(1/sL− 1), and the translation along optical
axis is represented as a scale factor s.

A scaled space S(i)` corresponding to S(i) could thus be
generated to register the object gp. Since we do not know the
depth of the object, we consider a series of finely separated
discrete scale values for d` for each row, and generate a
new scaled pose space S(i)` using the estimated pose space
of the background layer. We forward-blur the reference
image using the tuples {(S(i)` ,ω

(i)∗
L )} , and determine the

energy difference between gp and forward-blurred image
only in the pixels covering the object p. We decide that the
object is present at this layer ` if these two match, i.e. if
the RMSE is below a threshold. The object is marked as a
change if no relative depth value d` is able to explain the
distortion. Algorithm 1 summarises the steps involved in
image registration and change detection in 3D scenes.

Algorithm 1 Steps for 3D change detection
1: Register the background layer of every row using the

pose spaces {S(i)} using (13) and estimate the pose
weight vectors {ω(i)∗

L } and the change vectors {χ(i)∗
L }.

2: Segment and extract objects {gp} from the changes
{χ(i)∗

L } using the procedure given in Section 2.3.2.
3: Register each object gp at a layer ` with relative depth d`

using the scaled tuples {(S(i)` ,ω
(i)∗
L )} following Section

2.3.3.
4: If the object gp does not get registered at any layer `,

mark it as change.

Importance of Relative Depth: With the increas-
ing use of imaging from low-flying drones, it has become
necessary to consider the relative depth of the scene as
against a planar assumption in traditional aerial imaging
using high-altitude aircrafts. For instance, a conservative
estimate of the average height of top ten tallest buildings
in major Indian cities as on March 2016 [38] are 120m (Ben-
galuru), 115m (Chennai), 135m (Delhi), 122m (Hyderabad),
and 227m (Mumbai). Hence, any image captured from an
altitude of 1000m or less will experience depth-dependent
motion artifacts in the image plane. Fig. 3 (left) shows the
relative depth of a building at different heights for camera-
to-ground distances of 600m and 1000m. For a camera with
focal length of 2000 pixels, the difference in the length of
the blur caused for the points on the ground plane and
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Fig. 3. Variation of relative depth and blur length versus building height
for camera-to-ground distances of 600m and 1000m.

the building are not negligible as can be observed from
Fig. 3 (right).

2.4 Pose Space Adaptation

We now discuss the following: (i) how the row-wise pose
space adaptation helps in speeding up the motion estima-
tion and imposing smoothness, (ii) what motion parameters
can be estimated during registration of a single row, and (iii)
how to tackle registration of homogeneous rows.

Dynamically Varying Pose Space : Since the camera
motion changes continuously for every row, we use different
pose search spaces S(i) for each row i following [7], instead
of a single common pose space S for all the rows. Through
this adaptation of the pose space, we impose smoothness on
the camera trajectory during background registration in (13).
This also speeds up the optimisation problem, since the size
of the search space for each row is small. Let N(τ ,b, s) =
{τ + qs : τ − b � τ + qs � τ + b, q ∈ Z} denote the
neighbourhood of poses around a particular 6D pose vector
τ , where b is the bound around the pose vector and s is the
step-size vector. We estimate the pose weight vector ω(i)

L

row-wise with S(i) = N(τ
(j)
c ,b, s), where j = i + 1 for

i < M/2 and j = i − 1 for i > M/2, M is the number
of image rows, and τ (j)

c is the centroid pose of the jth row,
which is given by

τ (j)
c =

∑
τk
ω
(j)
τk τ k∑

τk
ω
(j)
τk

. (14)

Thus, each row of the distorted image after background-
registration is associated with a tuple (S(i),ω(i)∗

L ).
Degrees of Freedom: In this work, we follow a projec-

tive motion blur model for each row. The relation between
the projections of a 3D point in a planar scene on the image
plane when the camera is at the origin and at position
(R,T), is given by a homography H as [12], x(R,T) = Hx,
where

H = Kν

(
[R] +

1

d
TnT

)
K−1ν . (15)

Here R = [Rx, Ry, Rz]
T and T = [Tx, Ty, Tz]

T are camera
rotation and translation vectors, [R] is the matrix exponen-
tial equivalent of R [12], Kν is the known camera intrinsic
matrix, ν is the focal length, n = [0, 0, 1]T is the normal of
the scene plane which is parallel to the image plane, and d is
the distance between the camera centre and the scene. Thus,
each S(i) represents a 6D camera pose space.
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Estimation of 6D camera motion by registering a single
row of the distorted image to the reference image is not
unambiguous. A vertical displacement of a horizontal line
could be due to a rotation about horizontal axis (x) or a
translation along vertical axis (y). Hence, the estimation of
camera motion from a single row could lead to the above
ambiguity. The homography due to the rotation “Rx = θ”
is given by H1 in (16). This is equivalent to the homography
H2 corresponding to a vertical translation “Ty = y0(cos θ −
1) + ν sin θ” and “Tz = −y0 sin θ

ν + cos θ”, for the points on
the row y0.

H1 =

1 0 0
0 cos θ ν sin θ
0 − sin θ

ν cos θ

 andH2 =

1 0 0
0 1 y0(cos θ − 1) + ν sin θ
0 0 −y0 sin θ

ν + cos θ

 (16)

If the pose search space contains both these transforma-
tions, then our optimisation problem could pick either one,
since both are correct. Hence, as an initialisation, we solve
the 6D camera motion for a block of rows around the middle
row, instead of a single row. From this estimate ω(b)∗

L , we
calculate the centroid pose τ (b)

c using (14). Then, we proceed
with the camera motion estimation of the middle row using
S(M/2) = N(τ

(b)
c ,b, s).

Homogeneous Rows: While estimating motion for a
particular row using (13), the optimisation problem may
not converge or may lead to a trivial solution if the row
of the distorted image is uninformative. We therefore detect
homogeneous rows and ignore them during row-wise esti-
mation. For these rows, the centroid of the camera motion
is interpolated from the estimated camera motion of neigh-
bouring informative rows. For every row, we determine the
horizontal gradient using the filter [−1, 1]. We then count
the number of values (Nε) greater than ε. If the ratio of
this value and the number of columns, Nε/N < n0 for a
particular row, then we consider that row as homogeneous.
In addition, the homogeneity check helps in automatically
choosing the initial block of rows to kickstart the row-wise
estimation. We choose the block of rows nearest to the centre
which is devoid of homogeneity for this purpose.

3 EXPERIMENTS

The experiments section is divided into three parts. In
the first part, we demonstrate the working of our change
detection method for 3D scenes using synthetic examples.
In the next part, we provide a quantitative analysis of our
algorithm and compare with existing methods using our
synthetic dataset. Since there are no existing datasets of
RSMB images for change detection, and also since existing
change detection datasets do not contain RS artifacts, we
created and employed our own dataset for validation with
different camera trajectories exhibiting RS and MB distor-
tions. Finally, we show results on real examples for both
planar and 3D scenes.

Comparisons: We compare our joint RSMB framework
with sequential frameworks of MB-RS deblur-register and
RS-MB rectify-register, employing state-of-the-art methods
to address motion blur and rolling shutter independently.
We use the method of Xu et al. [17] for nonuniform de-
blurring, and the methods of Liang et al. [20], Ringaby and
Forssén [22] and Grundmann et al. [23] for RS rectification.

We also compare with the recent joint RSMB deblurring
algorithm of [26], which performs deblurring on a single
RSMB image assuming that the camera motion is only 2D
out-of-plane rotations (or in-plane 2D translations). For real
3D scenes, we compare with locally adaptive image registra-
tion methods of Linger and Goshtasby [33], and Zaragoza
et al. [32] that take care of local geometric variations.

For [20] and [22], we implemented a two-frame version
of their multi-frame algorithm; both our method and their
methods are given the knowledge that the first image is the
reference image. For [23], we used the stabilization option
from YouTube. We used our own implementation for [33].
We used the author provided codes for [32], [17], and [26].

Synthetic 2D Experiments Due to space constraints, we
discuss the following synthetic experiments with respect to
planar scenes in the supplementary material: (i) the accuracy
of the camera motion estimation of our method during the
registration of two images without any changes, where we
also demonstrate the inaccurate motion estimation of [20]
and [22], (ii) comparisons for change detection in planar
scenes with the sequential frameworks [17]+[20] and [17]+
[22], and the joint RSMB framework [26].

3.1 Synthetic Experiments

The effect of RS and MB is simulated in the following
manner. We generate a series of camera pose values forming
a trajectory. From this series, we assign a set of poses consec-
utively to each row with successive rows sharing a subset
of poses. We determine the homography corresponding to
these poses using (15) and generate the RSMB image using
(5). To generate RS-only image, we use one pose per row.

(a) (b) (c)

Fig. 4. Synthetic experiment: Change detection in a 3D scene. (a)
Reference image, (b) Depth map, and (c) RSMB image.

3D Scenes: We show the performance of our method
for change detection in 3D scenes. Fig. 4(a) shows a clean
image of a 3D scene and Fig. 4(b) shows its corresponding
depth map. The darker the region, the farther it is from
the camera. The background layer, having a relative depth
value of 1, is shown in dark gray, since it is farthest from
the camera. There are two objects at different depths; one
(bunny) at a relative depth of 0.5 and another (block) at
0.4 with respect to the background. The 3D camera motion
is applied synthetically on this 3D scene with objects ac-
cording to the homography equation in (15) and the image
formation model in (5). The object with lower relative depth
experiences larger motion, since it is closer to the camera.
We consider three cases of change detection by varying
the reference image: (i) one-object change, (ii) two-objects
change, and (iii) no change.

Case-(i): We first consider the reference image with only
the bunny as in Fig. 5(i)-(a). We follow the steps in Algorithm
1 to detect the changes. To perform the registration of
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Fig. 5. Synthetic experiment: Change detection in a 3D scene. Row-1: Case-(i) One-object change, Row-2: Case-(ii) Two-object change, and Row-
3: Case-(iii) No-object change. (a) Reference image, (b) RSMB image, (c) Background registered image, (d) Detected changes after background
registration, (e) Extracted objects, (f) Detected changes, and (g) Estimated depth map (with detected changes in red).

background, we solve (13) to get pose weight vectors for
each row. The background-registered image is shown in
Fig. 5(i)-(c). The change vector weights are nonzero for the
unregistered regions, which correspond to both the objects,
but only one of which is the actual change. This is shown
as a binary image in Fig. 5(i)-(d), which is the result of
the 2D approach [7]. Note that the bunny object which is
actually present at a different depth is registered except for
the borders, since the intensities within the object are mostly
homogeneous. The size of the blur along borders though,
is different, and hence, the border is clearly marked as a
change. We fill and extract these binary regions using the
method in Section 2.3.2. The filled-in binary object image
showing the extracted objects is shown in Figs. 5(i)-(e).

Following Section 2.3.3, we find the RMSE between the
object regions in the reblurred image at different depths and
the RSMB image, and this variation of RMSE is plotted in
Fig. 6(i). We set the threshold value to be 20. We can observe
from the plot that the bunny gets registered at a relative
depth of 0.5 with an RMSE value 8.84, but the block does
not register at all at any depth, since the RMSE values are
consistently high. Hence, the block is marked as a change as
shown in Fig. 5(i)-(f). The estimated depthmap is shown in
Fig. 5(i)-(g) with detected changes marked in red.

Case-(ii): We now use the reference image with neither
bunny nor block as shown in Figs. 5(ii)-(a). The RSMB image
is shown in Fig. 5(ii)-(b) which is same as in the previous
case. The background-registered image is shown in Fig. 5(ii)-
(c). The detected regions of changes and extracted objects are
shown in Figs. 5(ii)-(d) and (e), respectively. In background
layer registration, both objects are detected as changes, since
they do not belong to the background. Further now, for both
objects, there is no relative depth that could register them
with the reference as can be observed from the plot of Fig.
6(ii). Hence, our method detects both the objects as changes
correctly, as shown in Fig. 5(ii)-(f). The estimated depthmap
is shown in Fig. 5(ii)-(g) with changes marked in red.

Case-(iii): With the same RSMB image as before as shown
in Fig. 5(iii)-(b), we now use the reference image in Fig.
5(iii)-(a) with both objects, bunny and block, present. Our
method correctly registers the two objects at relative depths
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Fig. 6. RMSE vs. d` for registration of bunny and block in Fig. 5.

0.5 and 0.4 after background registration corresponding to
the lowest RMSE values in Fig. 6(iii). Thus, our method
reports no changes between the reference and RSMB images
as shown in Fig. 5(iii)-(f). The estimated depthmap is shown
in Fig. 5(iii)-(g), and there are no red regions corresponding
to detected changes.

3.2 Quantitative Comparisons

To perform quantitative analysis, we created a synthetic
dataset for two-image change detection. We cover the fol-
lowing scenarios: (a) motion estimation with no change, (b)
change detection in a planar scene, and (c) change detection
in a 3D scene. The types of camera motion considered are
(i) 2D (tx, ty), (ii) 3D (tx, ty, rz), and (iii) 3D (rx, ry, rz).
Here, x and y denote horizontal and vertical axes, respec-
tively, and z denotes the optical axis. Both uniform and
nonuniform camera motions are considered. For (a), we
estimate camera motion using our method without append-
ing the identity matrix for the change vector. For (b), we
use our joint estimation method of (13), and for (c), we
follow our Algorithm 1. For comparisons, we use [17]+[20]
and [17]+[22] for RSMB images. For RS-only images, we
directly perform RS registration using [20] and [22] without
deblurring. The joint RSMB framework of [26] does not
perform well even for planar scenes as shown in Fig. 20
in the supplementary material. Hence, we do not provide
its quantitative comparisons on the synthetic dataset, but
only show results on real images in Sec. 3.3. We use the
following metrics suggested in [39] for change detection:
(i) precision (Pr), (ii) percentage of wrong classification (PWC),
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TABLE 1
Comparison of RMSE values between RS/RSMB and registered

images for different methods in the case of no change.

RSMB Uniform Nonuniform
Method tx, ty tx, ty, rz rx, ry, rz tx, ty tx, ty, rz rx, ry, rz
[17]+[20] 6.78 7.75 7.48 6.39 5.97 8.44
[17]+[22] 6.79 4.42 5.19 6.05 5.23 6.92

Ours 3.43 1.46 1.13 1.85 1.17 2.26

RS Uniform Nonuniform
Method tx, ty tx, ty, rz rx, ry, rz tx, ty tx, ty, rz rx, ry, rz

[20] 2.67 7.53 7.61 6.32 6.09 7.88
[22] 3.19 4.33 4.16 4.92 4.52 5.25

Ours 0.52 1.47 3.56 0.49 1.75 3.27

TABLE 2
Comparison of quantitative metrics for different methods in change

detection of planar scenes.

RSMB tx, ty tx, ty, rz rx, ry, rz
Method Pr PWC Fm Pr PWC Fm Pr PWC Fm
[17]+[20] 0.80 3.29 0.76 0.81 3.69 0.75 0.81 7.45 0.59
[17]+[22] 0.80 2.87 0.78 0.80 2.40 0.82 0.81 2.91 0.79

Ours 0.91 0.99 0.92 0.91 0.67 0.95 0.90 0.82 0.93

RS tx, ty tx, ty, rz rx, ry, rz
Method Pr PWC Fm Pr PWC Fm Pr PWC Fm

[20] 0.80 3.18 0.78 0.81 4.33 0.72 0.81 6.45 0.62
[22] 0.80 2.37 0.82 0.81 2.70 0.80 0.81 1.67 0.86

Ours 0.90 0.82 0.93 0.90 0.79 0.94 0.90 1.26 0.90

and (iii) F-measure (Fm). The formulae are provided in the
supplementary material. Values closer to one are preferred
for Pr and Fm, while a low value is preferred for PWC.

No-change performance: In Table 1, we show the perfor-
mance of camera motion estimation of different methods.
Our method consistently outperforms other methods due to
our fine row-wise motion estimation as against the use of
interpolation in other methods. The performances of other
methods are better in the absence of motion blur (RS case)
in comparison to their own results for the RSMB case, since
deblurring inadvertently introduces artifacts. For uniform
camera velocity in the RS case, [22] does well with RMSE
less than 5. [20] performs well for the translation-only case
as it deals with just that. The performances of both [20]
and [22] reduce for the RSMB case, while the RMSEs of our
method are still low.

Change Detection in Planar Scenes: For planar scenes,
we add an object while creating RS/RSMB images using
different motions. In Table 2, we show the metric values for
all the three methods. Our Pr and Fm values are consistently
at or above 0.90 in all the cases, while the other two methods
perform worse. Similarly, PWC values are within 1 for our
method, but they are higher for the other two methods. Our
method comes first in all cases, while [22] comes next, since
it is able to handle rotations as well, unlike [20].

Change Detection in 3D Scenes: For 3D scenes, we employ
the one-object change case, since it is more challenging as
one object has to be registered at a different depth from that
of background, while the other object has to be detected
as a change. Table 3 shows the results. We note here that
[20] and [22] do not handle 3D scenes in the presence of
translations, and their performance is worse, as expected.
Our performance in the 3D scenario is as good as that for
the planar case, which shows the effectiveness of our layered
registration approach. We note here that filling-in of objects

TABLE 3
Comparison of quantitative metrics for different methods in change

detection of 3D scenes.

RSMB tx, ty tx, ty, rz rx, ry, rz
Method Pr PWC Fm Pr PWC Fm Pr PWC Fm
[17]+[20] 0.77 3.62 0.57 0.77 4.69 0.56 0.79 7.40 0.42
[17]+[22] 0.77 3.55 0.59 0.77 4.33 0.56 0.79 2.39 0.70

Ours 0.89 0.59 0.90 0.86 0.71 0.89 0.95 0.44 0.93

RS tx, ty tx, ty, rz rx, ry, rz
Method Pr PWC Fm Pr PWC Fm Pr PWC Fm

[20] 0.79 3.66 0.59 0.78 6.89 0.50 0.79 6.19 0.44
[22] 0.79 4.72 0.54 0.78 6.48 0.50 0.79 1.37 0.79

Ours 0.99 0.35 0.95 0.98 0.48 0.94 0.99 0.33 0.95

is not performed for the planar case unlike the 3D case, and
hence the metric values for the planar case are slightly lower
than that of 3D case for our method.

3.3 Real Experiments

For real experiments, we capture images using mobile
phone cameras with motion to generate the desired RSMB
effect. The reference image is captured with no camera
motion. We use different mobile phones throughout our
experiments: Google Nexus 4 for Figs. 7, 9(top) and Figs. 21,
24, and 25 in the supplementary, Motorola MotoG2 for
Fig. 9(bottom), and Xiaomi Redmi for Fig. 22 in the sup-
plementary. The images in Fig. 12 are drone images. The
camera intrinsic matrix of each of these mobile phones is
obtained by the precalibration procedure of Zhang [40].

2D Scene: The reference image is a scene with horizontal
and vertical lines, and static objects as shown in Fig. 7(a).
This is captured with a static mobile phone camera. We then
add a new object to the scene. With the camera at approxi-
mately the same position, we recorded a video of the scene
with free-hand camera motion. The purpose of capturing
a video (instead of an image) is to enable comparison with
Grundmann et al. [23]. From the video, we extracted a frame
with high RS and MB artifacts and this is shown in Fig. 7(b).
Our algorithm takes only these two images as input. We start
Algorithm 1 by performing background layer registration
and change detection simultaneously using (13). The reg-
istered reference image is shown in Fig. 7(c). The lines in
the reference image are correctly registered as curves, since
we forward-warp the reference image by incorporating RS
effect. The presence of motion blur can also be noted.
This elegantly accounts for both geometric and photometric
distortions during registration. The change detection after
background registration is shown in Fig. 7(d), which is also
the result of the 2D approach [7]. We then extract other
depth layers and object layers using the procedure described
in Sec. 2.3.2, and the extracted objects are shown in Fig. 7(e).
In this example, the scene is planar and there is only one
object. Our algorithm correctly captures this during the
object registration step and marks the object as the final
change. Fig. 7(f) shows the detected changes in red with
the background as the only layer marked in gray.

Comparisons: We first deblur the RSMB image using
the nonuniform deblurring method of [17]. The reference
and deblurred images are then given as inputs to the RS
rectification algorithms of [20] and [22]. [20] tries to de-
tect a translatory camera motion while the camera motion

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2016.2630687

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

(a) (b) (c) (d) output of [7] (e) (f) our depthmap
(changes in red)

Fig. 7. Real experiment: Change detection in a 2D scene. (a) Reference image, (b) RSMB image, (c) background registered image, (d) detected
changes [7], (e) object detection, and (f) estimated depth map and detected changes (red).

(a1) (a2)

(b1) (b2)
Deblur-Register framework: (a1-b1) Registered images using [17]+[20] and [17]+
[22], (a2-b2) detected changes.

(c1) (c2) (c3)
Register-Reblur framework [23]+ [12]: (c1) Registered image, (c2) reblurred
image, (c3) detected changes.

(d1) (d2) (d3)
Joint RSMB framework [26]: (d1) Local blur kernels, (d2) reblurred image, (d3)
detected changes.

Fig. 8. Comparisons for the example in Fig. 7.

involves rotations too, and hence there are false positives
in the detected changes as shown in Fig. 8(a2). [22] per-
forms quite well though there are misregistrations along
the edges which can be observed in Fig. 8(b2). This is due
to its approximation of continuous camera trajectory by
a piecewise linear motion interpolated using the camera
poses at certain key rows. (This is demonstrated further
in the supplementary material.) Thus, our method clearly
performs better than these methods.

We next compare our algorithm with a serial framework
that will rectify the RS effect first and then account for MB.
We use the RS video rectification method of Grundmann et
al. [23], and the state-of-the-art deblurring method of Whyte
et al. [12] for non-uniform motion blur estimation. The
captured video is given as input to [23] which gives an RS
rectified video as output. The rectified frame corresponding
to the RSMB image we had used in our algorithm is shown
in Fig. 8(c1). We now estimate the global camera motion of
the rectified image using [12]. We then apply the estimated
camera motion from the rectified frame on the reference
image, and detect the changes with respect to the rectified
frame. This reblurred image are shown in Fig. 8(c2). Note
that from Fig. 8(c3), the performance of change detection

is much worse than our algorithm. The number of false
positives is high as can be observed near the horizontal
edges in Fig. 8(c3). Though the RS rectification of [23] works
reasonably well to stabilize the video, the rectified video
is not equivalent to a global shutter video especially in
the presence of motion blur. The camera motion with non-
uniform velocity renders invalid the notion of having a
global non-uniform blur kernel.

We finally compare with the joint RSMB motion esti-
mation framework of [26]. For the comparison to be fair,
we first estimate the camera trajectory using [26], and then
reblur the reference image using the motion to produce the
RSMB effect. We then detect changes between the reblurred
image and the observed RSMB image. The method of [26]
does not model inplane rotations; the estimated local blur
kernels are shown in Fig. 8(d1) and they are invariant
within a row, whereas the actual motion involves variation
of blur even within a row due to inplane rotation. Hence,
the reblurred image in Fig. 8(d2) does not match well with
the RSMB image in Fig. 7(b), and the change detection
performance is quite poor as shown in Fig. 8(d3).

3D Scenes: We now show examples for change detection
in real 3D scenes. In the first scenario, we capture a scene
from the top of a building looking down using a mobile
phone camera. The reference image is captured without
moving the camera and is shown in Fig. 9[top](a). The
distorted image is captured with predominant horizontal
translatory motion of the camera. This can be observed from
the shearing effect in Fig. 9[top](b). This image also has
heavy motion blur, and it has two new objects as changes.
The majority of the scene is the ground plane and can be
considered planar, but the small parapet in the bottom right
is at a distance different from that of the ground, and hence
it incurs a different amount of blur and rolling shutter effect.

We first register the background plane using (13) as
shown in Fig. 9[top](c). The ground gets registered, but
the parapet does not, as expected. This can be seen from
the border of the parapet in the detected changes after
thresholding in Fig. 9[top](d). This is the result of the 2D
approach [7], where the 3D nature of the scene is not taken
care of. Though at this stage, the actual changes have also
been correctly detected. We then extract each object by
filling in the holes following the procedure in Sec. 2.3.2.
For each object in Fig. 9[top](e), we find a scale so that
it gets registered at a particular relative depth following
Algorithm 1. The parapet gets registered at a relative depth
of 0.8. The other two objects are not registered, and hence
they are considered as the final changes, which are shown
in Fig. 9[top](f).

Comparisons: In Fig. 10[top], we show the results of
the joint RSMB method [26]. Since the RSMB image in
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(a) (b) (c) (d) output of [7] (e) (f) our depthmap
(changes in red)

Fig. 9. Real experiment: Change detection in a 3D scene. (a) Reference image, (b) RSMB image, (c) background-registered image (d) detected
changes after background registration (output of [7]), (e) extracted objects, and (f) estimated depth map and detected changes (in red).

(a1) (a2) (a3)

(b1) (b2)
Joint RSMB framework [26]: (a1) Estimated local blur kernels, (a2) deblurred
image, (a3) detected changes, (b1) reblurred image, and (b2) detected changes.

(c1) (c2)

(d1) (d2)
Locally adaptive registration [17]+[33] and [17]+[32]: (c1-d1) Registered images,
and (c2-d2) detected changes.

Fig. 10. Comparisons for the example in Fig. 9[top].

Fig. 9[top](b) exhibits a predominant shearing effect (2D
motion) and has negligible inplane rotations, it is expected
to perform better than the earlier example. Fig. 10(a1) shows
the estimated local blur kernels which are horizontal as
expected, though the overall shearing effect is not captured
completely, since the method operates only on a single im-
age. Hence, we globally align the deblurred result with the
reference image and then detect the changes. The deblurred
image and detected changes are shown in Fig. 10(a2) and
(a3), respectively. The performance is not as good due to
the deblurring artifacts which creates much noise in the
change detection result. We also detect changes between the
reblurred image and the observed RSMB image (after global
alignment). This result as shown in Fig. 10(b2) is better,

(a1) (a2) (b1) (b2)

Fig. 11. Comparisons with locally adaptive registration methods, [33]
and [32], for the example in Fig. 9[bottom]: (a1-b1) Registered images,
and (a2-b2) detected changes.

though not on par with our result.
We also compare our output with locally adaptive reg-

istration algorithms of [33] and [32]. We give as inputs, the
reference and deblurred RSMB images. The registered im-
ages using [33] and [32] are shown in Figs. 10(c1) and (d1),
respectively. Both adapt the homographies of the reference
image locally to try to register with the distorted image. But
these adaptations are not perfect as can be observed by the
difference images in Figs. 10(c2) and (d2).

Another example captured using handheld camera is
shown in Fig. 9[bottom], in which there is minimal motion
blur. The ground has very less texture in this example, and
hence it gets registered with tables as the background layer.
The objects on the ground are marked as changes after back-
ground registration (in Fig. 9[bottom](d)). This is also the
output of the 2D approach [7]. The extracted objects on the
ground get registered at a farther depth (with relative depth
of 1.1) than that of the layer that has tables. The estimated
depth map is shown in Fig. 9[bottom](f), and the detected
changes are marked in red in the same figure. Since this
example contains very minimal MB, the expectation is that
local adaptive homography-based registration algorithms
should work well. The registered and difference images
using [33] and [32] are shown in Fig. 11. The method of [33]
is not able to register local variations due to the RS effect in
this example too, while [32] works reasonably well.

We also show the results of our registration for images
captured from drones in Fig. 12[top] and [middle]. Both the
reference and distorted images are picked from drone cap-
ture which are shown in Figs. 12(a) and (b). The background
registered image is shown in Fig. 12(c), and the result of
the 2D approach [7] is shown in (d). The 3D objects are
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(a) (b) (c) (d) output of [7] (e) (f) our depthmap

Fig. 12. Drone imaging: (a) Reference image, (b) RSMB image, (c) background registration, (d) result of the 2D registration method [7]), (e)
detected 3D objects, and (f) estimated depth map (no changes are detected in top and middle rows).

also detected as changes, since they could not be registered
using the ground layer poses. We then detect object layers
(Fig. 12(e)), and each of the extracted object region from the
reference image gets re-registered with the corresponding
region of the RSMB image at a different scale corresponding
to its relative depth. The building in Fig. 12[top] has the
estimated relative depth of 0.68, and the relative depths of
the three structures in Fig. 12[middle] are 0.9, 0.91, and 0.99.
The estimated depth map is shown in Fig. 12(f). In [top] and
[middle], there are no changes between the reference and
the RSMB images. Our algorithm successfully registers the
background layer and all 3D layers.

Fig. 12[bottom] shows an example imaging a tem-
ple complex where the two temple towers are pyramid-
like structures. Due to the viewpoint change between
Fig. 12[bottom](a) and (b), the structure of the temple towers
in the two images are very different (note the change in
the position of the tip of the towers). The camera motion is
predominantly vertical, and there is a vertical stretch in the
RSMB image. Our layered assumption does not adhere to
this example and our method marks the temple towers also
as changes as shown in Fig. 12[bottom](f). The ground layer
is correctly registered and the other changes in the scene are
also correctly detected.

4 DISCUSSIONS

In this section, we discuss about choice of parameters,
algorithm complexity, and sparsity. In the supplementary
material, we discuss about how our RSMB model subsumes
the GSMB model, tackling illumination variations, and the
effect of the size of changed regions in the spatial domain.

Choice of Parameters: The bounds of the camera
pose space and the step sizes of rotations and translations
used here, work well on various real images that we have
tested. In real experiments, we start with the registration

Fig. 13. Comparison of times taken to estimate camera motion with
different degrees of freedom with respect to that of 6D motion.

of middle block of seven rows using a large pose space:
tx, ty=N(0, 8, 2) pixels, Rx, Ry=N(0, 0.3, 0.1)◦, and Rz=
N(0, 4, 1)◦. The relatively smaller pose space is adaptively
chosen for row-by-row registration: N(tcx, 3, 1) pixels,
N(tcy, 3, 1) pixels, N(tcz, 0.1, 0.1) scale, N(Rcx, 0.1, 0.1)

◦,
N(Rcy, 0.1, 0.1)

◦ and N(Rcz, 1, 0.5)
◦. Decreasing the step

sizes further increases the complexity, but provides little
improvement for practical scenarios. The large bounding
values for the middle block used suffice for most real cases.
However, for extreme viewpoint changes, those values can
be increased further, if necessary. We work on the intensity
range [0–255]. We use 255I in place of the identity matrix
and thus χ acts as a scaling factor on 255I to compensate
for the changed pixels. Hence, the value of the brightness
constancy term in our framework is high, and the values of
`1-norms are lower. Therefore, we employ high values for
λ1 and λ2. λ1 weights the sum of pose weight vector and λ2
weights the `1-norm of χ. We observed that λ1 = 104 and
λ2 = 103 work uniformly well in all our experiments.

Algorithm Complexity and Run-time: We use a gradi-
ent projection based approach to solve the `1-minimisation
problem (13) using SLEP [34]. It requires a sparse matrix-
vector multiplication with order less than O(N(|S| + N))
and a projection onto a subspace with order O(|S| + N) in
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each iteration with convergence rate of O(1/k2) for the kth
iteration. Here N is the number of columns and |S| is the
cardinality of the pose space (which is higher for the middle
block). Run-times for our algorithm for different types of
motion using an unoptimised MATLAB code without any
parallel programming on a 3.4GHz PC with 16GB RAM
are shown in Fig. 13 as a percentage taken for 6D motion.
These values correspond to the examples shown in synthetic
experiments section with RSMB image containing 256 rows
and 384 columns. The time taken considering a 6D motion
space is 1302 seconds (∼ 4.5× compared to 3D) and this
is still tractable. As the number of free parameters in the
camera motion increases, the run-time increases as expected,
since the camera pose search space gets larger. In addition,
the optimisation problem takes longer for the middle block,
since the pose space chosen is larger. We do note here that,
since the motion blur estimation of rows in the top-half
and bottom-half of the image are independent, they are
amenable to parallelisation.

Sparsity: Finally, we would like to add that imposition
of sparsity on the region of changes which serves to accom-
modate differences due to 3D scenes or new/moving objects
between images can be exploited even for applications
such as mosaicing and super-resolution. However, for aerial
imagery, this does limit the capture duration between the
reference and probe image.

5 CONCLUSIONS

In this work, we formulated a novel unified framework to
model the combined effect of rolling shutter and motion
blur caused by camera motion for registration and change
detection in 3D scenes. We proposed a sparsity-based opti-
misation algorithm which performs row-wise registration of
the reference and distorted images and detects changes be-
tween them. Our layered approach could comfortably han-
dle registration of both planar and 3D scenes. Experiments
showed that our method performed better than individually
employing rolling shutter rectification and motion deblur-
ring as well as the existing joint formulation framework.
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Supplementary Material
Image Registration and Change Detection under Rolling

Shutter Motion Blur

In this supplementary material, we show (i) evaluation
of camera motion estimation in the absence of changes,
(ii) change detection in planar scenes and comparisons,
(iii) change detection in global shutter motion blur images,
(iv) handling illumination variation, (v) the effect of size of
the changes, and (vi) evaluation metrics.

1 CAMERA MOTION ESTIMATION

We first compare the performance of our method with other
methods on camera motion estimation (with no changes in
the scene). In Fig. 14, we show two images, a reference clean
image in Fig. 14(a) and an image of the same scene distorted
with RS and MB in Fig. 14(b). The camera motion applied
synthetically on the image is in-plane translatory motion but
of nonuniform velocity. The scene is assumed to be planar
with only one layer.

(a) (b) (c) (d)

Fig. 14. Synthetic experiment: Camera motion estimation. (a) Reference
image, (b) RSMB image, (c) Registered image, and (d) Difference
image.

To register these two images, we need to solve (13). We
consider the change vector to be absent here to study the
efficiency of our camera motion estimation. In general, our
method does not require the prior information about the
presence or absence of changes in the scene. The change vec-
tor values will be zero if there are no changes in the scene. In
this experiment, we ignore the identity matrix part of B and
estimate onlyω. We start with estimating the camera motion
for the middle row assuming the following large pose space
S(M/2): x-translation N(0, 20, 1) pixels, and y-translation
N(0, 20, 1) pixels. We restrict the out-of-plane translation
values and rotation values to zero. Once the camera pose
weight vector is estimated for the middle row, we select the
following neighbourhood search space for the other rows
following Section 2.4: x-translation N(tcx, 3, 1) pixels, and
y-translation N(tcy, 3, 1) pixels. The registered image is got
by applying the estimated camera motion on the reference
image and is shown in Fig. 14(c). The thresholded difference
between the registered image and the distorted image is
shown in Fig. 14(d).

Comparisons: We first deblur the RSMB image using
[17]; this result is shown in Fig. 15(a). We then estimate the
camera motion between the reference and deblurred images
using the RS methods of [20] and [22]. We then apply the
camera motion on the reference image to register with the
deblurred image. The registered images using [20] and [22]
are shown in Figs. 15(b) and (c), respectively. The difference
images of (a)-(b) and (a)-(c), shown respectively in Figs.
15(d) and (e), contain significant nonzero values depicting
misregistration. The RMSEs for our method, [17]+[20], and

(a) (b) (c)

(d) (e)
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(f) (g) (h)

Fig. 15. Comparison with deblur-register MB-RS framework: (a) De-
blurred image using [17]. Registered images after RS motion estimation
using (b) [20], and (c) [22], and Difference images (d): (a)-(b), (e): (a)-
(c). Camera motion estimation for nonuniform camera path using (f) our
method, (g) [20], and (h) [22].

[17]+[22] in the valid region of the registered images are 2.22,
7.46, and 6.87, respectively.

In Fig. 15(f-h), we show the camera motion trajectories
estimated by our method and other methods. The camera
motion estimated by our method, shown in Fig. 15(f) as a
continuous line, follows correctly the ground truth trajectory
shown as a dotted line. The camera motion estimated by
the methods of [20] and [22] are given in Figs. 15(g) and
(h), respectively. Since the camera motion has a nonuniform
velocity, both the competing methods result in inaccurate
motion estimation. Liang’s method fits a Bézier curve for
the trajectory using the estimated local motion vectors,
which results in incorrect fitting. Ringaby’s method follows
the ground truth trajectory, but it is inaccurate due to the
use of interpolation. The RMSEs of the translation motion
estimates (tx,ty) in pixels of Liang’s, Ringaby’s, and our
method are: (3.45,0.28), (1.79,0.37), and (0.18,0.14), respec-
tively, for the range of [-15,15]pixels for tx and [0,10]pixels
for ty . The corresponding maximum errors are (8.81,0.81),
(5.29,0.82), and (0.80,0.44), respectively. Clearly, the perfor-
mance of our method is better. Since there are no ground
truth changes, the percentage of wrong classification (PWC)
provides a quantitative measure for number of estimated
wrong changes. The PWC of Liang’s, Ringaby’s, and our
method are 13.9, 10.4, and 0.3, respectively, which indicates
that our method detected very less false positives. However,
both these methods work well if the camera velocity is
uniform and the motion blur is negligible.

To confirm the correctness of our implementations of
Liang [20] and Ringaby [22], we show an example in Fig. 16
involving registration of an RS-only image. The simulated
camera velocity is uniform, and each row of the RS image in
Fig. 16(b) corresponds only to a single warp of the reference
image in Fig. 16(a). The registered image using our method
and the other two methods are shown in Figs. 16(c) to (e).
The corresponding RMSEs are 0.54, 3.58, 3.67, which show
that the registrations using all the three methods are good.
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(f) (g) (h)

Fig. 16. Synthetic experiment: (a) Reference image, (b) RS image
caused by uniform camera motion, and Registered images using (c) our
method, (d) [20], and (e) [22]. Camera motion estimation for uniform
camera velocity using (f) our method, (g) [20], and (h) [22].

Competing methods perform well in the presence of only
RS effect with negligible motion blur provided the camera
velocity is uniform. In Figs. 16(f)-(h), we show the estimated
camera motions for the simulated camera path. Our method
estimates the camera trajectory very well, and so do the
other two methods.

We also compare with the joint RSMB framework of [26]
for the no-change scenario. We use the images from the
synthetic examples provided in [26] for which the ground
truth is available. Fig. 17(a) shows the reference image,
Fig. 17(a) shows the RSMB image. The RSMB image contains
only predominant 2D out-of-plane rotational motion and
the in-plane rotational motion is very much negligible. We
estimate row-wise motion using (a) and (b) and the RSMB
registered image using our algorithm is shown in Fig. 17(c).
The PSNR between Figs. 17(b) and (c) is 33.94dB corre-
sponding to an RMSE of 5.12, which shows that the RSMB
registration is correct. The deblurred output of Fig. 17(b)
using [26] is shown in (d), and the PSNR between the
reference image (a) and the deblurred image (d) is 30.62dB,
which is also quite high (corresponding to an RMSE of 7.51)
indicating correct deblurring. Thus, our method works as
good as [26] for the case of 2D motion; for motion having
inplane rotations, [26] performs poorly as will be discussed
in the next section.

2 CHANGE DETECTION IN PLANAR SCENES

We now demonstrate our change detection method for pla-
nar scenes. We add new objects to the reference image in Fig.
18(a) as changes, and simulate a 3D in-plane camera motion,
i.e. in-plane translations (tx, ty) and in-plane rotation (rz).
The RSMB image with objects is shown in Fig. 18(b). We
solve (13) to estimate both the camera motion weight vector
and the change vector. The pose space for the middle row is
N(0, 10, 1) pixels for translations, and N(0, 5, 1)◦ for rota-
tion. The search space for other rows around the estimated

(a) (b)

(c) PSNR: 33.94dB (ours) (d) PSNR: 30.62dB [26]

Fig. 17. Synthetic experiment: (a) Reference image, (b) RSMB image
caused by 2D out-of-plane rotational motion, (c) registered image using
our method, and (d) deblurred image of (a) using [26].

(a) Reference (b) RSMB (c) Registered

(d) Ours (e) [17]+[20] (f) [17]+[22]

Fig. 18. Synthetic experiment: Change detection in a planar scene.
(a) Reference image, (b) RSMB image, (c) Registered image, and (d)
Detected changes by our method (marked in white in RSMB grid, and
marked in red in reference grid). Detected changes by the method of (e)
[17]+[20] and (f) [17]+[22].

centroid of their neighbour rows is N(tc, 3, 1) pixels for
translations, and N(rc, 2, 0.5)

◦ for rotation. The registered
image and detected changes are shown in Figs. 18(c) and
(d), respectively. The white regions in Fig. 18(d) show that
the detected changes are indeed correct. Note that it is also
possible to obtain the locations of changes with respect to
the reference image grid by marking pixels in the reference
grid which map to the pixels marked as changes in the
RSMB grid when the estimated camera motion is applied.
The changes thus detected with respect to the reference grid
are shown as a red overlay in Fig. 18(d). Figs. 18(e) and
(f) show results using the deblur-register frameworks of
[17]+[20] and [17]+[22], respectively. There are a high number
of false positives in their outputs due to the lack of joint
RSMB formulation.



3

0 1000 2000 3000
0

0.5

1

1.5

Iteration numberS
u
m

 o
f 
c
a
m

e
ra

 p
o
s
e
 w

e
ig

h
t 
v
e
c
to

r

0 1000 2000 3000
0

20

40

60

80

Iteration number

l 1
 n

o
rm

 o
f 
c
h
a
n
g
e
 v

e
c
to

r

0 1000 2000 3000
0

20

40

60

80

100

Iteration number

T
o
ta

l 
c
o
s
t 
/ 
λ

1

(a) (b) (c)

Fig. 19. Various energy values in our cost function in (13) while estimat-
ing motion for row number 121 of Fig. 18(b).

(a) Estimated kernels (b) Reblurred reference (c) Detected changes

Fig. 20. Comparison with joint RSMB framework [26]: (a) Estimated local
blur kernels, (b) reblurred reference image, (c) detected changes.

We plot the various energy values in the cost function
while solving (13) for 121st row (randomly chosen) in Fig.
19. Fig. 19(a) shows the value of ‖ω(121)‖1 over iterations.
This value converges to one conforming to the conservation
of photometric energy. Fig. 19(b) shows the plot of ‖χ(121)‖1
in which the changed pixels are picked correctly over itera-
tions which can be observed by its stabilisation. The plot of
the total cost (as a ratio of λ1) over iterations in Fig. 19(c)
shows the convergence of our algorithm.

To compare with the joint RSMB deblurring method [26],
we first estimate the camera motion from the RSMB image,
and then reblur the reference image using the estimated
motion. This is to avoid artifacts due to the deblurring
process. Fig. 20(a) shows the estimated local blur kernels,
and Fig. 20(b) shows the reblurred image. Since the method
does not model the complete camera motion (no inplane
rotations), the reblurring result is very different from the
RSMB image as can be seen from the detected changes in
Fig. 20(c).

2.1 Change Detection – Additional Examples

We capture an image from atop a light house looking down
at the road below. The reference image in Fig. 21(a) shows
straight painted lines and straight borders of the road. The
RSMB image is captured by rotating the mobile phone
camera prominently around the y-axis (vertical axis). This
renders the straight lines curved as shown in Fig. 21(b).
Our algorithm works quite well to register the reference
image with the RSMB image as shown in Fig. 21(c). The new
objects, both the big vehicles and smaller ones, have been
detected correctly as shown in Fig. 21(d). We do note here
that one of the small white columns along the left edge of
the road in the row where the big van runs, is detected as a
false change. The RS rectification methods [20], [22] perform
worse than our method, even though the motion blur in this
example is not significant. The change detection outputs of
[20] and [22] are shown in Figs. 21(e) and (f), respectively.

In the next scenario, the side of a building is captured
with camera motion that results in curvy vertical edges in

(a) (b) (c)

(d) Our output (e) [12]+[20] (f) [12]+[22]

Fig. 21. Real Experiment. (a) Reference image, (b) RSMB image with
prominent curves due to y-axis camera rotation, (c) Registered image,
and Detected changes using (d) our method, (e) [12]+[20], and (f)
[12]+[22].

Fig. 22(b) as compared to 22(a). There is a single change
between the two images. Change detection should compen-
sate for these curves and detect the new object. Our method
performs well as shown in Fig. 22(d) and is better than other
methods. The registered images using our method, [20] and
[22] are shown in Figs. 22(c), (e), and (g), respectively. The
corresponding changes are shown in Figs. 22(d), (f), and (h)
respectively.

Three examples of wide area motion imagery are shown
in Fig. 23. The first row shows an example with global
motion blur with ground and building depth layers, and
the second row shows an example with global motion blur
of a planar scene. The reference image is shown in (a),
the distorted image is shown in (b), the registered image
is shown in (c), and the detected changes are shown in
(d). After detecting changes, we remove noise by remov-
ing components smaller than a fixed size using connected
component analysis. Our method performs well on both the
examples, detecting even small changes.

3 CHANGE DETECTION OF MOTION BLUR-ONLY
IMAGES

As noted earlier in Section 2.2 of the main paper, our rolling
shutter motion blur model subsumes the global shutter
motion blur model. In this section, we show an example
for a motion blur-only scenario arising from a global shutter
camera. The images are captured using a Canon EOS 60D
camera. Though this camera employs CMOS sensors, the
rolling shutter effect is close to negligible for common
camera motion, since unlike mobile phone cameras, the
readout speed is very fast. The reference image in Fig.
24(a) is captured with no camera movement, while the
distorted image in Fig. 24(b) is affected with motion blur
due to camera motion. All rows of the image are affected
by the same camera motion. We register the image through
row-wise camera pose estimation, and the corresponding
registered image and detected changes are shown in Figs.
24(c) and (d), respectively. Row-wise formulation estimates
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 22. Real experiment: Change detection in a 2D scene. (a) Refer-
ence image, (b) RSMB image, Registered image and detected changes
using (c-d) our method, (e-f) [12]+[20], and (g-h) [12]+[22].

(a) (b) (c) (d)

Fig. 23. Wide area motion imagery. (a) Reference image, (b) Distorted
image, (c) Registered image, and (d) Detected changes.

almost same camera motion for every row, as shown in Fig.
24(e), which is indeed true for this global shutter case. With
a prior knowledge of the type of distortion being global
shutter motion blur, it is also possible to register the whole
image (instead of row-wise registration) by estimating the
weights for the camera poses and the change vector using
(13).

(a) Reference image (b) GSMB image

(c) Registered image (d) Detected changes
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Fig. 24. Change detection in the presence of global shutter motion blur.

4 HANDLING ILLUMINATION VARIATIONS

The effect of illumination variations on the performance
of our method is discussed next. Since the reference and
observed images are captured at different times, there could
be global as well as local illumination variations. Global
variations primarily involve a change in overall ambient
lighting, while local variations could be due to shadows
or due to the introduction and removal of one or more
light sources. Our method can take care of row-wise global
variations through the camera pose weight vector. Under
similar illumination conditions, our optimization problem
results in a camera pose weight vector summing to one
due to the conservation of energy between the two images.
In the case when the illumination changes globally by a
multiplicative factor γ, the same vector adapts itself by
summing to γ. This is demonstrated in Fig. 25. The RSMB
image is shown in Fig. 25(d), and the reference images for
three different illumination conditions (same, low, high) are,
respectively, shown in Figs. 25(a), (b), and (c). Changes are
correctly detected at all three illumination conditions as
shown in Figs. 25(e) to (g). The sum of estimated camera
pose weight vector ‖ω(i)‖1 of every row for these three cases
are shown in Fig. 25(h). For the same case, this value is close
to 1 for all rows; for the low case, it is above 1 to compensate
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for the lower energy in the reference image due to a lower
global illumination, and for the high case, it is below 1 due
to a higher global illumination in the reference image.

(a) same (b) low (c) high

(d) RSMB image

(e) same (f) low (g) high
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Fig. 25. Handling illumination variations. (a-c) Reference images cap-
tured under three different illumination conditions, (d) RSMB image
captured under the same illumination condition as that of (a), (e-g)
Detected changes, and (h) Sum of camera pose weight vector for these
three cases.

5 EFFECT OF THE SIZE OF CHANGED REGION

The optimisation problem in (13) involves the sparsity of
the changes present in the scene. In aerial imaging and
surveillance scenarios, the changes are expected to cover
only a small portion of the scene, and hence our algorithm
works well in these scenarios. To study this behaviour, we
created a random Gaussian grayscale image f size 256×256,
and added the change as a block covering ten rows. The
changed region is white (with intensity 255). We then in-
troduced horizontal translatory RSMB effect on this image.
We estimate the camera motion using the clean reference
image and this RSMB image. The length of the change
along the row is varied to study the performance of our
method. The effect of length of the changed region on the
motion estimation is shown as blue line in Fig. 26(a). As the
length of the changed region increases, the average pixel
error increases but not very much, since we use a local
neighbourhood search space S(i) for every row. A common
global search space for all rows (S(i) = S(j), for all i, j)
results in worse motion estimation as the size of the changed
region increases; this can be seen from the red line in the
same figure.

We performed similar experiments for the GSMB case.
The motion is estimated using the full image instead of
a row-wise estimation. The resulting estimation error for
different sizes of changed regions is shown in Fig. 26(b).
We can observe in this scenario too, that increasing the size
of the changed region affects motion estimation. Till the area
covers 60% of the image area, the estimated error is within
one pixel.
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Fig. 26. Effect of the size of changed regions in motion estimation in the
case of (a) RSMB and (b) GSMB.

6 EVALUATION METRICS

One could use a number of metrics to compare the per-
formance of change detection result against the ground
truth. Certain metrics favour certain measures; a low False
Negative Rate may be favoured by a particular metric, while
a low False Positive Rate may be favoured by another. In the
scenario of change detection, let TP represent the number of
true positives (number of pixels that are correctly detected
as changes), TN represent the number of true negatives
(number of pixels that are correctly detected as nonchanges),
FP represent the number of false positives (number of pixels
that are wrongly detected as changes), and FN represent
the number of false negatives (number of pixels that are
wrongly detected as nonchanges). We use the following
three metrics for comparisons in Section 3.2 of the main
paper: (i) precision, Pr = TP / (TP + FP), (ii) percentage of
wrong classification, PWC = 100(FN + FP)/(TP+FN+FP+TN),
and (iii) F-measure, Fm = 2 (Pr · Re)/(Pr + Re), where recall Re
= TP / (TP + FN). Pr penalises false positives; if FP is zero,
then Pr is one. PWC penalises both FP and FN; the lower the
PWC, the better the performance. Fm is proportional to the
harmonic mean of recall and precision; close-to-one values
are preferable.
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