
Unrolling the Shutter: CNN to Correct Motion Distortions

Vijay Rengarajan1∗, Yogesh Balaji2†, A.N. Rajagopalan3

1,3Indian Institute of Technology Madras, 2University of Maryland
∗vijay.ap@ee.iitm.ac.in

Abstract

Row-wise exposure delay present in CMOS cameras is
responsible for skew and curvature distortions known as the
rolling shutter (RS) effect while imaging under camera mo-
tion. Existing RS correction methods resort to using multi-
ple images or tailor scene-specific correction schemes. We
propose a convolutional neural network (CNN) architecture
that automatically learns essential scene features from a
single RS image to estimate the row-wise camera motion
and undo RS distortions back to the time of first-row ex-
posure. We employ long rectangular kernels to specifically
learn the effects produced by the row-wise exposure. Ex-
periments reveal that our proposed architecture performs
better than the conventional CNN employing square ker-
nels. Our single-image correction method fares well even
operating in a frame-by-frame manner against video-based
methods and performs better than scene-specific correction
schemes even under challenging situations.

1. Introduction

The delay in the start of the exposure between the first
row and the last row of the sensor array (total line delay) in
CMOS cameras causes rolling shutter (RS) distortions. In
the presence of camera motion, each row experiences differ-
ent camera poses unlike in a global shutter camera, which
causes skew and curvature in the recorded image. Irrespec-
tive of whether an image or a video is captured, the camera
motion inevitably causes distortions; though the type of dis-
tortion varies depending on the exposure duration as com-
pared to the total line delay, and this leads to the need for
different correction methods as shown in Fig. 1 (top). Short
exposure time causes only the RS effect, while medium to
long exposure causes motion blur too. In this work, we
study the short exposure scenario.

While most existing works [8, 14, 3, 10] deal with video
RS correction in short exposure setting, the task is highly

†This work was done when the second author was studying at IIT Madras.

DIFFERENT TYPES OF MOTION DISTORTIONS AND CORRECTION METHODS

TYPE OF INFORMATION THAT CAN BE USED TO ESTIMATE CAMERA MOTION

Figure 1. Overview of correction techniques for various image
capture and exposure settings.

challenging for the data-starved situation comprising of
only a single image. This situation is very much plausible
given the prevalent hand-held on-the-go imaging using mo-
bile phones. Other sources of information in the camera can
be tapped to facilitate such a data-deserted scenario. The
motion information provided by the gyroscope can be used
for RS correction post-capture, but it is heavily limited by
the sparsity of gyro-samples within the short exposure espe-
cially for single-image correction. Electronic image stabi-
lizer (EIS) such as the one present in a Google Pixel phone
camera needs multiple frames making it inapt for single im-
age capture. Optical image stabilizer (OIS) such as in an
iPhone camera can tackle only small motions, and its main
application is in videos and long exposure images.

To handle RS motion distortions, one needs to under-
stand from where the uneasiness of human visualization
comes about. In videos, it is due to the local structural
changes along the temporal axis (through frames); in a
blurred image, it arises due to the unsharpness of edges,
while in a single RS distorted image, it is due to the struc-
tural changes compared to a human preconceived percep-
tion of the scene. Hence, as shown in Fig. 1 (bottom), dif-
ferent types of information can be utilized for these various

1



Figure 2. Top: Rolling shutter distorted images captured using mobile phones. Bottom: Corrected images using our CNN-based method.

correction methods. Frame-to-frame correspondences are
used for video correction, while local blur kernels are used
in the blurred case. In our method, for single image RS cor-
rection, with no other extra information available, we have
chosen human perception as our utility.

Video correction methods: In these works, the wobbly
effect between frames are corrected and stabilized for better
visual output. Important works include block-wise optical-
flow-like model of [8], block-wise seven-parameter model
of [6], motion interpolation-based model of [14], homogra-
phy mixture based model of [3] and spline-based model of
[10]. All these models utilize inter-frame correspondences
(based on intensity in [8] and [6], and features in others)
to estimate the camera trajectory and register frames. They
also leverage the continuity and smoothness of camera mo-
tion between video frames.

Image correction methods: Few works indeed study RS
from only a single image. The RS deblurring work of [19]
uses local blur kernels to fit a continuous camera motion. In
the absence of blur, the work of [4] corrects the RS distor-
tions from face images using facial key points as features,
and is restricted to skew-type RS distortion. Using a simi-
lar inspiration for urban scenes, the method of [13] corrects
the RS effect from urban images using curves as features.
These two algorithmic methods are tailored for specific im-
age classes and are thus heavily dependent on the extraction
of their respective scene-specific features.

Proposed method: In this work, we automatically learn
features of scene classes using convolutional neural net-
works (CNN) to estimate the underlying camera motion
from a single RS-affected image and finally correct the
distortions. In contrast to manual selection and extraction
of features in scene-specific methods which can be an un-
fruitful exercise, CNNs can learn desired features essential
to correct distortions for a particular class by themselves.
Camera motion distortions causing motion blur have been
studied using CNNs so far. Apart from the works that per-
form non-blind deblurring [16, 15, 22], the work of [20]
takes a classification approach for blur kernel estimation,
and recently, the work of [2] regresses on the blur kernel
directly. All these methods learn blur information from lo-
cal image patches, while to learn the motion trajectory that

causes the RS effect in the absence of any blur, one needs to
extract and combine information from different parts of the
image. The effect of RS either with or without motion blur
has not been studied using neural networks.

In our work, the interplay between the scene structure
and the row-wise camera motion is learned using a neural
network that employs long kernel features. Our design first
extracts basic image features using square-convolutional
layers, followed by two banks of feature-interactive layers
employing row-kernel and column-kernel convolutions to
extract properties along horizontal and vertical directions,
specifically addressing the nature of the RS effect. Fi-
nally, these directional features are combined using fully-
connected layers to arrive at the RS motion.

We train the network using synthetic RS images regress-
ing for the intra-image camera motion. We do not regress
directly on the image, for example using generative net-
works [12, 9], since we do not seek better or new infor-
mation but only geometric unwarping. Once our trained
network predicts the motion, we correct the RS image us-
ing local warping. Fig. 2 shows our corrected outputs of
distorted images captured using mobile phones. Skew and
curvature distortions are corrected in all these examples.
Main contributions

– A method that rectifies the rolling shutter effect from
a single image without tailored extraction of specific
scene features and the knowledge of camera parame-
ters.

– A new CNN architecture designed specific to the expo-
sure mechanism in rolling shutter cameras that learns
row-oriented and column-oriented features.

We neglect depth-dependent motion and lens distortions.

2. Rolling Shutter Model

A static CMOS rolling shutter camera captures the same
image as that of captured using a global shutter camera.
This is referred to as the global shutter image, IGS . When
the camera moves during exposure, each row of sensors ex-
periences different camera pose due to the row-wise acqui-
sition resulting in local image warping. The observed dis-
torted image is referred to as the rolling shutter image IRS .



Let [tx(y), ty(y), tz(y), rx(y), ry(y), rz(y)] denote the
camera trajectory vector observed by the row y of the RS
image, where t denotes translations, and r denotes rotations.
To correct the distortion from an RS image having M rows,
we need to estimate 6M parameters corresponding to six
camera poses for each row. The questions that we ask are
what type of motion information can a single image pro-
vide, and what further restrictions does the assumption of
unknown camera intrinsics lead to. To answer these ques-
tions, we observe the RS effects produced by different types
of camera motion on a single image.

RS effects produced by camera motion Fig. 3 illus-
trates the local distortions produced by different types of
RS motion. Although each motion type creates its own kind
of distortion, there are similarities between some of them.
Some prominent effects are noted as follows:

No motion tx [I] ty [II] tz [IV]

No motion rx [II] ry [I] rz [I] [III]
Figure 3. Rolling shutter effects produced by different types of
camera motion.

[I] Vertical curvature: The translation tx (along the hor-
izontal axis) and the rotation ry (around the vertical axis)
produce similar RS effect, translating points on a row hor-
izontally. This manifests as curvature in vertical lines. For
tx, all points on a row move by the same amount, whereas
for ry , it varies slightly depending on the camera focal
length. For high focal lengths, all points on a row move
by almost the same amount.

[II] Vertical stretch/shrinking: Along the same lines, ty
and rx produce similar kind of RS effect, displacing points
vertically which results in stretching or shrinking of vertical
structures. Note the elongation of the house in the vertical
direction for ty and rx.

[III] Horizontal curvature: The in-plane rotation rz
bends both vertical and horizontal lines. It is important to
note that the same rz affect the points on the same row dif-
ferently based on their distances from the rotation center.
Hence, different vertical lines produce different curvatures
due to rz , which is unlike tx that affects all vertical lines in
the same manner irrespective of their column locations.

[IV] Vertical scale change: The optical axis transla-
tion tz slants the vertical lines located to either side of the
vertical axis only a little, since the camera motion away

from/towards the scene has to be very high within a single
exposure to create pronounced curvatures.

Motions considered for RS correction The disturbance
of straightness is visually unpleasant if it goes against hu-
man preconception. We rank the four distortions as follows
based on their undesirability: [III],[I],[II],[IV]. Humans are
more reactive to vertical and horizontal curvatures [I,III]
than that of vertical stretching/shrinking [II]. Optical axis
translation during a single image capture creates negligi-
ble distortions, and thus, [IV] can be safely ignored. With
unknown camera intrinsics, we also approximate the effect
due to ry as that caused by tx. Therefore, we consider only
the motions tx and rz in our model and ignore the others.
We write the mapping from a 2D point xGS on IGS to the
point xRS on row y of IRS as a 2D point transformation:

xRS =

[
cos rz(y) − sin rz(y)
sin rz(y) cos rz(y)

]
xGS +

[
tx(y)
0

]
,

≡ R(y)xGS + t(y), (1)

where R(y) is the 2D z-axis rotation matrix for row y and
t(y) is the 2D translation vector with zero y-axis motion.
Note that the unit of tx(y) is pixels in (1), and there is no
dependence on the camera intrinsic matrix. From this point
onwards, by translation, we mean tx, and by rotation, we
mean rz . It is important to note that the 2D motion model
in (1) is indeed row-wise, and hence it can model even high
visual distortions and not just a simple affine transformation
as would be the case for global 2D motion.

Motion trajectory model To express the camera tra-
jectory through the row exposures, we define the camera
motion as two vectors, one each for translation and rota-
tion, given by p1 = [tx(1), tx(2), . . . , tx(M)] and p2 =
[rz(1), rz(2), . . . , rz(M)]. For a row y ∈ [1,M ] of the dis-
torted image, the camera pose is [tx(y), rz(y)], and thus,
each distorted image IRS is associated with a camera tra-
jectory tensor P = [p1,p2] having 2M values. To correct
the distortion by undoing the motion, one needs to estimate
2M unknowns, or equivalently M camera poses, from a
single image.

Since estimating M poses from a single image is very
ill-posed, we leverage the short exposure time setting that
we operate on to model the camera motion by a polynomial
trajectory. To verify this assumption, we use the human-
recorded handshake trajectory dataset of [7]. We fit an n-th
degree polynomial to tx and rz motions in [7]. Fig. 4(top)
shows two sample trajectory plots with blue circles denoting
the recorded camera poses during the exposure and red dot-
ted lines representing the fitted polynomial trajectory. We
fit polynomials of different degrees to the recorded pose
samples and observed that the average fitting error almost
converges after n = 3 as shown in Fig. 4(bottom).

Therefore, we model the translation and rotation trajec-
tories as polynomials with respect to the row number. The



0 50 100

Time (ms)

-1.5

-1

-0.5

0
T

ra
n

s
la

ti
o

n
 (

m
m

)

Recorded camera poses

Fitted polynomial

0 50 100

Time (ms)

-3

-2

-1

0

R
o

ta
ti
o

n
 (

d
e

g
re

e
s
) Recorded camera poses

Fitted polynomial

0 2 4 6 8

Polynomial degree

0

5

10

A
v
g
. 
e
rr

o
r 

(p
ix

e
ls

) Translation fitting error

0 2 4 6 8

Polynomial degree

0

0.1

0.2

0.3

A
v
g
. 
e
rr

o
r 

(d
e
g
re

e
s
)

Rotation fitting error

Figure 4. Polynomial trajectory fitting in real camerashake dataset.

camera poses at each row index y ∈ [1,M ], we have

pi(y) = αi0 +

n∑
j=1

αij((y − 1) /M)j , i = 1, 2, (2)

where p1(y) = tx(y), p2(y) = rz(y), αij is the jth-degree
polynomial coefficient for the ith motion, and n = 3.

3. Rolling Shutter Correction
Fig. 5 provides an overview of our method. There are

three modules: a neural network for camera motion estima-
tion, trajectory fitting to get row-wise motion, and image
correction using the estimated camera motion. The input
to our method is a single RGB RS-distorted image, and the
output is the corresponding corrected image.

Figure 5. Overview of rolling shutter correction.

3.1. Camera Motion Estimation using CNN

In this work, we treat the problem of camera motion esti-
mation as one of regression, where we train and use a func-
tion ψ(IRS ;θ) to predict the camera trajectory tensor P∗,
where θ represents the weights (parameters) of the system.

P∗ = ψ(IRS ;θ) (3)

The power and complexity of the proposed method is in
ψ which is based on CNN that extracts information from
images to output the camera motion. CNNs allow us to do
away with the laborious manual design of algorithms to pick
correct features of the scene that are distorted in the image
to aid in the camera motion estimation. For face images,

[4] carefully chooses facial keypoints required for RS cor-
rection, while for correction of urban scenes, [13] chooses
curves and lines as features.

RS correction is essentially local image warping undo-
ing the geometric distortion; no new or better image infor-
mation (in the sense of applications such as denoising and
super-resolution) is sought. Hence, we regress on the cam-
era motion instead of directly on the image. Further, gen-
erative models such as general adversarial networks [12, 9],
which could directly learn to output the undistorted image,
are usually limited by the visual quality of the image output.
In our method, we correct the distorted image geometrically
using the motion estimate from the CNN.

Instead of learning to estimate the camera pose for every
row, we tap only the motion of K equally spaced rows as
CNN outputs since the motion lies in a lower dimensional
space as shown earlier. The size of each sampled ps1 and
ps2 is K, making the length of the output camera trajectory
tensor P∗ of the CNN in Fig. 5 as N = 2K. In our CNNs,
the input is a 256× 256× 3 RGB image and the output is a
30-length motion vector (corresponding to K = 15).

VanillaCNN We propose two CNN architectures in this
work: the first one is VanillaCNN as shown in Fig. 6(top).
It uses standard convolutional and pooling layers, in which
square kernels extract and combine local information from
the RS image to deduce the camera motion. Out of the seven
layers, the first four convolutional layers consist of square
filters, the outputs of which are passed on to ReLU units
followed by max-pooling over 2× 2 non-overlapping cells.
The last three are fully connected layers; the first of the
three uses Tanh, the second uses HardTanh, and the final,
none.

RowColCNN Obtaining and combining local informa-
tion from different parts of the image is a crucial aspect to
learn the RS motion. Our motivation for a new architecture
stems from the following observations:

(i) temporal motion information is present along image
columns,

(ii) information from image rows helps to reinforce row-
wise motion constancy, and

(iii) rotation can be better estimated if information from
image rows are extracted earlier since it affects left and
right areas of an image row differently.

Hence, we branch out VanillaCNN after feature extraction
from the initial square-convolutional layers into two banks.
The column kernel bank employs filters whose effective
support spans longer along the column, while the row ker-
nel bank employs row-oriented filters. Both these banks ex-
tract locally oriented information and combine them in their
own fully connected layers, before propagating them to the
final fully connected layers which have the same nonlinear-
ities as those of VanillaCNN. The two 4096-vectors from
the banks are first added, and then passed on to the nonlin-



VanillaCNN architecture

RowColCNN architecture

Figure 6. Proposed architectures for rolling shutter motion estimation. All convolution layers use valid pixel convolution and all maxpooling
layers use 2x2 window with a stride of 2.

earity leading to the single 4096-vector at the start of the
final fully connected layers. We call this architecture Row-
ColCNN which is shown in Fig. 6(bottom).

Training Given a set of S labeled images {(Ii,Pi)}, the
parameters θ of the model in (3) are estimated by minimiz-
ing the loss between the predicted trajectory vector P∗ and
the ground truth trajectory vector P as given in (4). We use
mean square error as our loss function and sampling from a
uniform distribution for initialization of weights during our
training. We train using stochastic gradient descent with a
learning rate of 0.05.

θ∗ = argmin
θ

1

S

S∑
i=1

‖ψ(Ii;θ)−Pi‖22 (4)

3.2. Prediction and Correction

During the motion prediction phase, the input RS im-
age is forwarded through the trained network to output K-
length translation and rotation vectors (N values). These
two vectors are then fit using a third-degree polynomial to
obtain the estimated motion values for each row p∗

1 and p∗
2

as in (2). The estimated trajectory tensor is then given by
P∗ = [p∗

1,p
∗
2].

Once the full camera trajectory is estimated, the RS im-
age must be corrected back in time to the first-row exposure
(i.e. the global shutter image). We first subtract the pose of
the first row from those of all rows, leading to an identity
transformation for the first row and all the remaining rows
having warps with respect to it. The dewarping or distortion
correction is done using a forward mapping where for each
pixel coordinate of the corrected (GS) image, we pick an in-
tensity from the distorted (RS) image. For every pixel xGS ,

we find a y∗ for which warping xGS using P∗(y∗) takes it
to an xRS having a row coordinate closest to y∗ [13]:

y∗ = argmin
y
‖ [xRS ]row− [R∗(y)xGS + t∗(y)]row ‖

2
2 (5)

where R∗(y) is the rotation matrix corresponding to
r∗z(y) and t∗(y) = [t∗x(y), 0]

T . Finally, the intensity at
pixel xGS on the GS image is copied from the location
R∗T (y∗)(xRS − t∗(y∗)) of the RS image.

4. Experiments
The experiments section is arranged as follows: (i) de-

scription of comparison methods, (ii) creation of training
and testing datasets, (iii) quantitative results and compar-
isons, and (iv) visual results and comparisons.

4.1. Comparison Methods

CNN models We perform comparisons between the two
proposed network architectures – VanillaCNN and RowCol-
CNN. We evaluate the effectiveness of both the architec-
tures on different datasets using various metrics.

Video models In non-learning based methods, we first
compare with two contemporary RS video correction meth-
ods of [14] and [3]. Since our method is single-image based,
we cannot directly use these video methods for comparison.
Therefore, for quantitative comparisons, we feed both the
reference undistorted GS and distorted RS images as inputs
to them. We then use our own two-image implementation
of their frameworks to correct the RS image. These two
reference-based correction schemes are used as the baseline
in our experiments. For visual video comparisons, we em-
ploy our method frame-by-frame on the videos used in their
works and compare with their outputs.



Single-image models We also compare with [13] and
[4], which address RS correction of urban scenes and faces,
respectively. We sent our images to the authors of [13] and
got back their results. We used our own implementation
for [4]. We gauge the outputs of these two methods and
our method against the reference-based baseline outputs as
described in the previous paragraph.

4.2. Dataset Creation

We use 256 × 256 as the size of both the input and out-
put images. We describe below the generation of synthetic
RS camera motion and the creation of training and testing
datasets for three classes of images. For each of the classes,
our CNNs are trained separately.

Camera motion We use random third-degree polynomi-
als as synthetic camera trajectories to generate training and
testing data. Each trajectory is a set of two 256-length vec-
tors (for row-wise motion), one each for translation and ro-
tation. We limit the translation to the range [−40, 40] pixels,
and rotation to the range [−π8 ,

π
8 ] radians.

Chessboard class We take different horizontally and/or
vertically translated versions of a 16-square chessboard im-
age as our basic data. We then apply synthetic RS motions
over these images to populate our full training set. To aid
in quantitative analysis, only for the chessboard class, we
train for three motion models: translation-only (T-only),
rotation-only (R-only), and combined translation and rota-
tion (T+R). For each of these three models, we generate a
training set of size 7014 (14 basic images × 500 random
motions + 14 basic images without motion). The CNN out-
put vector length is N=15 for the translation and rotation-
only models, and it is N=30 for the combined model (15
each for translations and rotations). We train both Vanil-
laCNN and RowColCNN for each of these three models.

Urban scene class We build the clean urban scene data
by combining the building images in Sun [21], Oxford [11]
and Zurich [18, 17] datasets. Each clean image is distorted
with 150 random camera trajectories giving us approxi-
mately 300,000 labeled images. We also randomly flip the
original images left-right before applying motion distortion.
For testing, we pick new images from the combined dataset
of [21], [11] and [18, 17] not used for training, and syntheti-
cally apply random motion to generate 200 test images. We
also create a separate test set from Caltech building dataset
[1] (from which none of the images are used in training at
all) generating RS effect in a similar manner.

Face class We use face images from the Labeled Faces in
the Wild (LFW) face dataset [5] for both training and test-
ing. The training set consists of faces of 5000 persons at dif-
ferent poses with 50 motions applied on each face, thereby
making the size of training data as 250,000. We choose 200
faces (different from that of training) for testing having dif-
ferent camera motions applied on each of them.

4.3. Quantitative Analysis

We first describe the metrics that we use for quantitative
analysis and then show our results.

Metrics We use the following three metrics: [P1]
PSNR (dB) between the ground-truth and corrected images,
[E2] root mean squared error (RMSE) between the ground-
truth and predicted motion in pixels for translation and de-
grees for rotation, and [E3] curvature residual in pixels. A
high P1, and low E2 and E3 indicate better performance.

To measure the curvature residual, which is specific to
the chessboard class, we first extract horizontal and verti-
cal curves from the corrected output, and then calculate the
distance between the curves and the ground-truth lines (at
all row and column locations). The RMSE of this distance
value for all curves gives E3.

Synthetic motion We now show the performance of RS
correction for the testing data built up using synthetic cam-
era motion.

Chessboard class: Table 1 shows the performance of dif-
ferent methods on the chessboard dataset based on P1, E2,
and E3. It is very clear that both our CNNs perform on
par with the baseline video correction methods (which use
a reference frame for motion estimation). The performance
of our single image method matches to that of these base-
line methods. Our use of long kernels in RowColCNN re-
sults in better performance as against the traditional square
kernel-based VanillaCNN. In all the cases, the PSNR (P1)1

of RowColCNN is higher than that of VanillaCNN in all
cases, and E2 and E3 are lower in most cases.

The urban-specific method [13] puts a hard constraint
of forcing curves into horizontal and vertical lines, and it
provides an advantage for the chessboard class. For the T-
only motion, [13] performs better than our method; but in
the presence of rotations, it is not able to correct curvatures
properly. It fares poorly even compared to VanillaCNN in
R-only and T+R cases.

Urban scene class: The correction performance of our
networks in comparison to other methods on both the com-
bined building and testing-exclusive Caltech urban datasets
are shown in Table 2. We observe that RowColCNN per-
forms better than VanillaCNN in both the datasets and on
par with the baseline methods. It performs better than
the urban-specific RS correction method of [13] in which
proper curve detection to aid in motion estimation is a cru-
cial step, and false curve detection might lead to wrong so-
lutions. And hence, it performs worse on urban scenes com-
pared to the chessboard class.

Face class: Table 2 also summarizes the correction per-
formance for the face class. We observe that the CNNs

1The range of PSNR (36–40dB) is generally higher than the typical
values observed in correction tasks. This is due to the nature of chessboard
having only two values – black and white, which results in most of the
entries attaining 0 value in the MSE image, thus leading to higher PSNR.



Table 1. Quantitative comparisons on the synthetic chessboard dataset.
Uses T-only R-only T+R

Method Type reference? P1 E2t E3h E3v P1 E2r E3h E3v P1 E2t E2r E3h E3v

Ringaby [14] Baseline Yes 40.84 0.65 0.68 0.89 36.84 1.31 0.74 1.85 36.91 1.86 1.32 0.69 2.05
Grundmann [3] Baseline Yes 38.76 0.92 0.76 1.12 36.99 1.18 1.12 2.19 37.03 1.63 1.41 0.72 1.93
RowColCNN Testing No 38.01 1.78 0.81 1.97 37.83 0.42 0.88 1.16 37.41 1.52 0.43 0.88 1.60
VanillaCNN Testing No 37.52 1.85 1.32 2.04 37.77 0.53 0.99 1.12 37.30 1.48 0.92 1.33 1.86

Rengarajan [13] Testing No 39.75 1.75 0.72 2.02 35.58 2.90 3.81 2.05 33.64 12.40 2.68 3.32 3.18

T: Translation, R: Rotation, P1: PSNR (dB), E2t: Motion RMSE (pixels), E2r: Motion RMSE (degrees), E3h: Horizontal Curve Residual, E3v: Vertical Curve Residual

Table 2. Quantitative comparisons on urban scene and face datasets.
Uses Combined building dataset Caltech building dataset LFW face dataset

Method Type reference? P1 E2t E2r P1 E2t E2r P1 E2t E2r

Ringaby [14] Baseline Yes 32.86 3.03 1.07 32.67 4.32 1.39 34.75 1.87 1.43
Grundmann [3] Baseline Yes 32.57 3.34 1.17 32.07 4.76 1.82 34.57 1.92 1.53
RowColCNN Testing No 32.25 3.76 1.15 32.50 5.07 1.41 34.14 2.17 1.67
VanillaCNN Testing No 32.19 3.84 1.29 32.36 6.22 1.68 34.01 2.96 1.82

Rengarajan [13] Testing No 29.82 11.89 3.58 29.15 15.76 3.26 – – –
Heflin [4] Testing No – – – – – – 29.32 18.03 –

P1: PSNR (dB), E2t: Motion RMSE (pixels), E2r: Motion RMSE (degrees)

achieve good performance here too. Even though the base-
line methods perform better than ours, they outperform us
only by a small margin. The performance of RowCNN is
better than the face-specific correction method of [4] due to
its limitations of working only on almost-frontal face poses.
Also, [4] estimates only a skew parameter, and hence we
have calculated only the PSNR (P1) and translation error
(E2t) values in the last row of Table 2.

Human camerashake dataset To test the capabilities of
our trained network on real camera motion, we employ the
dataset of [7], which contains 40 trajectories of real camera
shake by humans who were asked to take photographs with
relatively long exposure times. Since long exposure leads
to motion blur which is not within the scope of this work,
we use a short segment of the recorded trajectory to intro-
duce the RS effect (with 38.4ms top to bottom row delay).
We generated 200 such RS images for both chessboard and
urban scene classes by randomly clipping motion segments
from the 40 trajectories. We corrected them using the pre-
dicted motion from RowColCNN.

Table 3 shows the RMSE for both translation and rota-
tion, and the PSNR between the clean and corrected images.
The error is low and PSNR is high for both the classes sig-
nifying good RS correction by RowColCNN due to human
handshake. This confirms the validity of our third degree
polynomial assumption for camera motion during the expo-
sure of interest.

4.4. Visual Comparisons

We first compare the outputs of the two proposed CNNs
for a distorted chessboard image, and then show other visual
comparisons with existing methods.

CNN models Fig. 7(a) shows an RS image with heavy
rotations and translations. Both vertical and horizontal lines
are curved. The corrections by VanillaCNN and RowCol-
CNN are shown in Figs. 7(b) and (d), respectively. Vanil-

Table 3. RowColCNN performance on camerashake dataset [7].
PSNR (dB) Translation RMSE Rotation RMSE

Class P1 E2t (pixels) E2r (degrees)
Chessboard 37.23 2.8074 0.35
Urban scene 32.19 3.9677 0.76

laCNN corrects distortions to a good extent; however, it has
more residual errors compared to RowColCNN. The devi-
ation of the edges in the corrected image from the original
grid is shown in Figs. 7(c) and (e).

(a) RS (b,c) VanillaCNN and residual (d,e) RowColCNN and residual
Figure 7. Distortion correction of a chessboard image.

In RowColCNN, the initial square-convolutional layers
provide low-level information to the subsequent directional
banks which extract the required bidirectional information.
Fig. 8 shows the square filters of the first layer trained for
urban scenes which are mainly directed gradients at differ-
ent angles (not only horizontal and vertical). Row and col-
umn kernel banks combine these different directional fea-
ture maps in their respective directions to extract motion.

Figure 8. Trained filters for the first layer of RowColCNN.



(a) RS video frames

(b) Video correction by [14]

(c) Video correction by [3]

(d) Frame-by-frame correction by RowColCNN
Figure 9. Visual comparisons of our RowColCNN with existing
video correction algorithms.

Video methods We show a comparison of our frame-by-
frame RS correction against the video rectification methods
of [14] and [3]. The video methods employ a batch of neigh-
boring frames to estimate the camera trajectory, while our
method uses only one frame. We also do a global inplane
motion registration between our frame-by-frame corrected
outputs with respect to the corrected first frame (which in no
way could correct skew and curves by itself). Fig. 9 shows
some frames from the RS video of a sign pole taken from
[14], and the corresponding output frames of our method
and the two video correction methods. Our method restores
the straightness of the pole in almost all frames similar to
the correction by [14]. The correction by [3] is not as per-
fect for this heavy motion. The video is provided as a sup-
plementary material.

Single-image methods In Fig. 10, we show visual com-
parisons against scene-specific correction methods. The
motion estimation scheme for urban scenes in [13] heavily
depends on the selection of suitable curvatures in the image,
and hence, it fails to correct distortions when there are false
detections or natural curvatures. In the second column, [13]
tries to make the slanted step handles vertical, and it fails
in the third and fourth examples due to the presence of tree
branches. Similarly, [4] estimates only skew type distortion
from eye and nostril feature points extracted from almost-
frontal faces, and hence it fails on faces that are not frontal
(fifth) and badly illuminated (sixth). In all these varied ex-
amples, RowColCNN corrects distortions properly.

Human perception rating We surveyed 50 users to pro-
vide preferences for 30 image sets, consisting of clean GS,
RS, RowColCNN corrected, and [13] or [4] corrected im-
ages, based on their visual perception. The sets include
a variety of RS images ranging from no to heavy motion.
Fig. 11 shows the performance of RowColCNN against
competing methods. The participants rate our outputs as
equal or better than those of comparison methods at least

RS distorted images

Urban method [13] Face method [4]

Correction by RowColCNN
Figure 10. Visual comparisons with existing scene-specific single-
image methods of [13] (urban scenes) and [4] (faces).

Figure 11. Human rating for CNN outputs against [13] and [4].

75% of the time for both urban and face corrections (left
bar in both plots). Our method is equally or better preferred
at least 90% of the time compared to the RS image. More
information is provided in the supplementary material.

Captured real data In Fig. 2, we show the correction
results of our captured images using RowColCNN. These
are taken using a Motorola MotoG2 mobile phone camera
either with a handshake or from a moving vehicle. The cap-
tured images are resized and cropped to 256× 256 (without
any image rotation that would affect the row-wise exposure
property), and then are corrected by our method. Skew and
curvature disortions in these varied scenes are properly re-
moved by our method.

More examples are provided in the supplementary mate-
rial.

5. Conclusions

We proposed a new CNN architecture based on long rect-
angular kernels to aid in correcting rolling shutter distor-
tions from single-images. We modeled the camera motion
as translation+rotation polynomials sans any camera cali-
bration, and it was shown to work for real images captured
with mobile phones. Our single image method performs
on par with existing video correction algorithms which use
multiple images. The learning power of CNNs removes the
difficulty of manual feature choice and extraction as em-
ployed by existing nonlearning-based single-image works.



References
[1] M. Aly, P. Welinder, M. Munich, and P. Perona. Towards Au-

tomated Large Scale Discovery of Image Families. In IEEE
Second Workshop on Internet Vision, CVPR, June 2009. 6

[2] A. Chakrabarti. A neural approach to blind motion deblur-
ring. In Computer Vision – ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part III, pages 221–235. Springer International
Publishing, 2016. 2

[3] M. Grundmann, V. Kwatra, D. Castro, and I. Essa.
Calibration-free rolling shutter removal. In International
Conference on Computational Photography (ICCP), pages
1–8. IEEE, 2012. 1, 2, 5, 7, 8

[4] B. Heflin, W. Scheirer, and T. E. Boult. Correcting rolling-
shutter distortion of CMOS sensors using facial feature de-
tection. In International Conference on Biometrics: Theory
Applications and Systems, pages 1–6. IEEE, 2010. 2, 4, 6, 7,
8

[5] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Re-
port 07-49, University of Massachusetts, Amherst, October
2007. 6

[6] Y.-G. Kim, V. R. Jayanthi, and I.-S. Kweon. System-on-
chip solution of video stabilization for cmos image sensors
in hand-held devices. IEEE Transactions on Circuits and
Systems for Video Technology, 21(10):1401–1414, 2011. 2

[7] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and
S. Harmeling. Recording and playback of camera
shake: Benchmarking blind deconvolution with a real-world
database. In Computer Vision – ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-
13, 2012, Proceedings, Part VII, pages 27–40, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg. 3, 7

[8] C.-K. Liang, L.-W. Chang, and H. H. Chen. Analysis and
compensation of rolling shutter effect. IEEE Transactions
on Image Processing, 17(8):1323–1330, 2008. 1, 2

[9] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. In International
Conference on Learning Representations (ICLR), 2016. 2, 4

[10] A. Patron-Perez, S. Lovegrove, and G. Sibley. A spline-
based trajectory representation for sensor fusion and rolling
shutter cameras. International Journal of Computer Vision
(IJCV), pages 1–12, 2015. 1, 2

[11] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In Proceedings of the IEEE Computer Vision and
Pattern Recognition (CVPR), 2007. 6

[12] A. Radford, L. Metz, and S. Chintala. Unsupervised rep-
resentation learning with deep convolutional generative ad-
versarial networks. In International Conference on Learning
Representations (ICLR), 2016. 2, 4

[13] V. Rengarajan, A. N. Rajagopalan, and R. Aravind. From
bows to arrows: Rolling shutter rectification for urban
scenes. In Proceedings of the IEEE Computer Vision and
Pattern Recognition (CVPR), 2016. 2, 4, 5, 6, 7, 8

[14] E. Ringaby and P.-E. Forssén. Efficient video rectification
and stabilisation for cell-phones. International Journal Com-
puter Vision (IJCV), 96(3):335–352, 2012. 1, 2, 5, 7, 8

[15] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth.
Discriminative non-blind deblurring. In Proceedings of the
IEEE Computer Vision and Pattern Recognition (CVPR),
pages 604–611, 2013. 2

[16] C. Schuler, H. Burger, S. Harmeling, and B. Scholkopf. A
machine learning approach for non-blind image deconvolu-
tion. In Proceedings of the IEEE Computer Vision and Pat-
tern Recognition (CVPR), pages 1067–1074, 2013. 2

[17] H. Shao, T. Svoboda, T. Tuytelaars, and L. V. Gool. Hpat
indexing for fast object/scene recognition based on local ap-
pearance. In Proceedings of the second International Confer-
ence on Image and Video Retrieval, CIVR’03, pages 71–80,
Berlin, Heidelberg, 2003. Springer-Verlag. 6

[18] H. Shao, T. Svoboda, and L. Van Gool. Zubud – Zurich
buildings database for image based recognition, 2003. 6

[19] S. Su and W. Heidrich. Rolling shutter motion deblurring.
In Proceedings of the IEEE Computer Vision and Pattern
Recognition (CVPR), pages 1529–1537, 2015. 2

[20] J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolu-
tional neural network for non-uniform motion blur removal.
In Proceedings of the IEEE Computer Vision and Pattern
Recognition (CVPR), pages 769–777, 2015. 2

[21] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In Proceedings of the IEEE Computer Vision and Pat-
tern Recognition (CVPR), pages 3485–3492. IEEE, 2010. 6

[22] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural
network for image deconvolution. In Conference on Neural
Information Processing Systems (NIPS), pages 1790–1798,
2014. 2



Unrolling the Shutter: CNN to Correct Motion Distortions
Supplementary PDF

Vijay Rengarajan1∗, Yogesh Balaji2†, A.N. Rajagopalan3

1,3Indian Institute of Technology Madras, 2University of Maryland
∗vijay.ap@ee.iitm.ac.in

This supplementary document is arranged as follows: (i) additional results for real images and from the test sets, (ii) some
failure cases, (iii) description of human perception rating survey, and (iv) analysis of RowColCNN banks.

1. Additional Results
We show additional results of our correction method using RowColCNN for the images that we captured using our mobile

phones in Fig. S1. Image (a) is a common urban scene image of the inside of a train with many lines in the scene and our
method performs well in correcting the RS distortion. Images (b) and (c) are more challenging in that there are structures
other than straight lines; even in these cases, our method works well. Image (d) is not a regular urban image but an image of a
banyan tree having many natural curved structures in its trunk. It has a skew RS effect since it is taken from a moving vehicle.
Our method corrects the skew in this case too despite being not specifically trained in the presence of natural curvatures. The
last image (e) contains some blur in addition to the RS distortion, and our method corrects the slanting effect well.

RS distorted images captured using mobile phones

Corrected images
(a) (b) (c) (d) (e)

Figure S1. Results of RowColCNN for real images.

We now show additional results from the test sets. Fig. S2 shows RS distorted images and their corresponding output
images from the urban test set. The CNN is able to learn curvature correction even for the case of rotated images (slanted
away from the vertical) as shown in (b) and (c). Fig. S3 shows corrections from the face test set. RowColCNN is able to
correct diverse types of faces, and it is also robust to face markings as shown in the third column as well as occluding objects
as shown in (d).
†This work was done when the second author was studying at IIT Madras.

1



RS distorted images

Corrected images
(a) (b) (c) (d) (e) (f) (g)

Figure S2. Results of RowColCNN from urban testing set.

RS distorted images

Corrected images
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure S3. Results of RowColCNN from face testing set.

Undistorted ground-truth images

RS distorted images

Corrected images
(a) (b) (c)

Figure S4. Failure Results of RowColCNN from urban testing set.



2. Failure Results
In Fig. S4, we show some results of RowColCNN in which the RS distortions are not corrected properly. In (a), a

number of branches and shadows in the scene causes RowColCNN to not correct the RS effect fully, leaving a small residual
curvature in the output image. In (b) and (c), small residual distortion remains in the corrected image when compared with
the ground-truth image, and yet, the outputs are not visually displeasing to the viewer.

3. Human Perception Survey
Even though the error in motion estimation and the comparison of PSNR help to quantify and compare different RS

correction algorithms, we additionally sought a human rating for the corrected images. There might be cases where the esti-
mated motion could be different from that of the ground-truth motion with the corrected image being still visually plausible
as shown in the last two examples of the previous section. To address this behavior, we surveyed 63 humans (42 for face
class and 21 for building class) for their judgment based on what they visually perceive in the final output.

The survey consisted of 30 questions each in urban scene class and face class. Each question had four images that had
to be rated, namely, (i) the ground-truth GS image, (ii) the distorted RS image, (iii) RS corrected image using RowColCNN
(our method), and (iv) RS corrected image using the competing methods [13] for urban class and [4] for face class. Every
image could be assigned one of the four values, 1 to 4, with 1 denoting the better among the given four.

Figure S5. Human Perception Survey: Sample questions provided to the participants.

(a) Rating for urban images of different methods against the rest of the methods.

(b) Rating for face images of different methods against the rest of the methods.
Figure S6. Human perception rating survey results.



Fig. S5 shows two sample questions from the survey. The order of the four images are randomized when presented to the
users, and they are not given the label of images (i.e. GS, RS, or correction methods). Since the RS correction results in black
borders due to warping, we combine those black regions from the corrected images and apply the same to all images. The
participants have the choice to select one option (1, 2, 3, or 4) for each of the images A, B, C, and D. The same rating can be
chosen for more than one image if the user feels that they look visually similar. For example, the user can rate two images
with the same value of 1; in this case, the next choice should continue with 2 and not 3, i.e. the ranks have to be consecutive.
The images used for the survey, their random ordering, and user responses are provided in the supplementary zip file.

The survey results are given in Fig. S6. Each plot shows how equal or better a particular image out of the four labels
performs against the other three images. The percentages of both equal rating and better rating are shown in the plots. For
instance, in the CNN Rating plot of Fig. S6(a), one can read that the output image of the CNN is rated equally 28% of the
time against that of [13], and it is rated above [13] 49% of the time by the users. Our inferences from the survey results are
as follows:

• The undistorted GS image is preferred equal to or above all others at least 80% of the time against all other three
images in both the urban and face classes. It is preferred 94% of the time against the RS image and it is expected.

• Our CNN is better than the competing methods [13] and [4] in the following aspects:

(a) It performs equally or better than the original GS image 57% and 66% of the time as against 40% and 53% of the
time for [13] and [4] for urban and face datasets, respectively.

(b) It is preferred more than [13] and [4] (ignoring equal performance) 49% and 45% of the time, respectively. If the
equal rating is included, its preference jumps to 77% and 75%, respectively.

• The corrected images from our method as well as competing methods are rated better than the RS image which is to
be expected.

4. RowColCNN Analysis
In this section, we analyze the RowColCNN based on its bank responses and translation invariance property.

4.1. Responses of Row and Column Banks

We wish to observe the excitation of row and column kernel banks of RowColCNN for images containing differently
oriented edges. To achieve this, we look at the response vector at the end of the two banks for different input images. We
calculate the number of values above a particular threshold value to get a sense of how large is the contribution of each bank.
We obtain a plot by varying this threshold which tells how fast or slow the magnitude of values decreases. We created images
of black and white strips at different angles from vertical to horizontal for this purpose. Fig. S7 shows the illustration of the
formula corresponding to the plot.

Figure S7. Responses of Row and Column Banks: We tap the response vector of each bank, and plot the ratio of number of elements greater
than a threshold for a range of threshold values.

Fig. S8 shows the response plots corresponding to row and column kernel banks. We make the following observations:

• Both column and row banks are excited to see vertical lines more than horizontal lines. This can be seen from the
dropping rate of the plots of both banks where the darker plots corresponding to more horizontally-oriented lines fall
faster than the lighter plots (red or green).



0 0.2 0.4 0.6 0.8 1

Threshold

0

0.2

0.4

0.6

0.8

1

N
o

n
z
e

ro
 r

a
ti
o

Column kernel bank

Responses for Horizontal(dark)

to Vertical(red) strips

0 0.5 1

Threshold

0

0.2

0.4

0.6

0.8

1

N
o

n
z
e

ro
 r

a
ti
o

Row kernel bank

Responses for Horizontal(dark)

to Vertical(green) strips

Figure S8. Responses of Row and Column Banks: (Left) Sample input images of strips at different angles. (Right) Response at the bank
output.

• The excitation level is more for the column bank than for the row bank for a line at any particular angle. The plots for
the row bank fall to zero much earlier than the corresponding plots for the column bank.

• The ratio of excitation between vertical and horizontal lines is higher for the column bank than for the row bank. This
can be inferred from the width of the two plots.

4.2. Invariance under Global Translations

A checksum condition for any single-image RS motion estimation method is its consistency in estimating the same camera
motion when different globally translated versions of the same image are provided as inputs, i.e. it should output the same
motion for all globally translated versions of the same image. To verify this behavior, we generated 21 different globally
translated versions of ten different zero-motion images, some of which are shown in Fig. S9 (left). We then allowed Row-
ColCNN to predict the motion trajectory for each of these images. The expectation is to have zero predicted motion for all
images.

Fig. S9 (right) shows the plots of the mean motion trajectories and their standard deviations of all the predicted motions.
It can be seen that the estimated trajectory is very close to zero for both translations and rotations. (Note that the axis range
in the plot is [-1,1] pixels for translation and [-0.5,0.5] degrees for rotation.) Hence, we can say that RowColCNN is invariant
under global translations.

50 100 150 200 250

Row number

-1

-0.5

0

0.5

1

T
ra

n
s
la

ti
o
n
 i
n
 p

ix
e
ls

Mean predicted translation

Standard deviation

50 100 150 200 250

Row number

-0.5

0

0.5

R
o

ta
ti
o

n
 i
n

 d
e

g
re

e
s

Mean predicted rotation

Standard deviation

Figure S9. Invariance under Global Translations: (Left) Sample images used to check translation invariance. (Right) Mean and standard
deviation of the estimated motion trajectories.

–


	2017_cvpr
	2017_cvpr_supp

