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ABSTRACT

Change detection between two images in the presence of degradations is an important problem in the
computer vision community, more so for the aerial scenario which is particularly challenging. Cameras
mounted on moving platforms such as aircrafts or drones are subject to general six-dimensional motion
as the motion is not restricted to a single plane. With CMOS cameras increasingly in vogue due
to their low power consumption, the inevitability of rolling-shutter (RS) effect adds to the challenge.
This is caused by sequential exposure of rows in CMOS cameras unlike conventional global shutter
cameras where all pixels are exposed simultaneously. The RS effect is particularly pronounced in aerial
imaging since each row of the imaging sensor is likely to experience a different motion. For fast-
moving platforms, the problem is further compounded since the rows are also affected by motion blur.
Moreover, since the two images are shot at different times, illumination differences are common. In this
paper, we propose a unified computational framework that elegantly exploits the sparsity constraint
to deal with the problem of change detection in images degraded by RS effect, motion blur as well
as non-global illumination differences. We formulate an optimization problem where each row of the
distorted image is approximated as a weighted sum of the corresponding rows in warped versions of
the reference image due to camera motion within the exposure period to account for geometric as well
as photometric differences. The method has been validated on both synthetic and real data.

Keywords: Change detection, CMOS sensors, rolling shutter, motion blur, illumination variation,
aerial imaging

1. INTRODUCTION

Detecting changes between images is an important problem in many research areas such as aerial
surveillance, object tracking, cartography, etc. Unlike stationary camera surveillance, aerial image
capturing systems provide complex challenges due to the moving nature of the vehicle. As the scene is
being exposed, motion of the vehicle, and hence the camera, causes motion blur in the resultant images.
These conventional cameras employ CCD sensors in which the whole image is captured during a single
global exposure time period, and hence are called global shutter (GS) cameras. Registering images
affected by motion blur using either feature-based or photometric-based approaches is not possible
without considering the effect of and solving for the camera motion.

Recently, CMOS sensors are being increasingly employed in cameras since the hardware circuitry
used is minimal compared to that of used for CCD sensors. The photon acquisition mechanism is
modified in CMOS cameras to enable this simplification. Instead of a global exposure of all sensors
in the image plane array, each row of the sensor plane is exposed sequentially that enables sharing a
single read-out circuit for all rows, thereby reducing power consumption and cost. These cameras that
employ row-wise sensor acquisition are called rolling shutter (RS) cameras. This change in the way
of image acquisition invites new artifacts in the form of row-dependent motion blur when the camera
moves during exposure time. In addition to motion blur and rolling shutter artifacts, illumination
variations prove to be an important factor to consider in change detection algorithms. Even in the case
of the same scene being captured by the same camera, the time of capture could alter the photometric
nature of the recorded image due to atmospheric illumination changes between the two times. A good
change detection algorithm for CMOS cameras should thus take into account these three phenomena,
viz. motion blur, rolling shutter effect, and illumination.
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1.1 Related Works

We review some of the recent works that deal with motion blur, rolling shutter effect, and illumination
in this section.

Motion Blur Modeling a convolutional blur model is common case in most traditional uniform
deblurring algorithms. This model does not encompass all kinds of blur but a restrictive form involving
only in-plane camera translations. When the camera is free to move during capture, which is especially
the case in airborne systems, the motion is not restricted to simple translations. In real a general
6D motion involving rotations and translations is possible resulting in non-uniform blurring across the
image. Recent works such as Whyte et al.,1 Hu and Yang,2 Paramanand and Rajagopalan3 model
the motion-blurred image as weighted instances of the warps of the latent image for planar scenes
that the camera had experienced during capture. Tai et al.4 assume that the blurring function is
known apriori and proposed a non-blind space-variant deblurring scheme based on Richardson-Lucy
deconvolution. Whyte et al.1 represent the blurring function in a dense 3D grid of camera rotations
to perform non-uniform deblurring. Xu et al.5 propose a single model to perform both uniform and
non-uniform deblurring using `0 sparse representation.

Rolling Shutter Effect Works that deal with RS effect focus on the problem of video stabilization.
Liang et al.6 estimate a global motion between frames of a video that is used to assign motion for
every row using Bezier curve interpolation and rectify the RS effect. Baker et al.7 model the RS
removal problem as temporal super-resolution of camera motion. Ringaby and Forssen8 model 3D
camera rotations across keypoints in frames of a video, fit them to a continuous curve, and rectify the
RS effect and stabilize the video from the interpolated motion of each row. Grundmann et al.9 propose
a technique based on homography mixtures for video stabilization. Pichaikuppan et al.10 handle RS
effect and motion blur in the application of change detection.

Illumination Modeling Illumination change is an important factor to consider to compare images
of a scene taken at different times. An oft-followed approach is to transform images to a common
canonical illumination domain, in which the two images would thus have same illumination and could
be compared to detect changes. White balancing used by Gijsenij et al.11 is one such transformation.
Another technique is to normalize the mean and variance of the pixel intensity values of images. Both
images could be normalized to a fixed mean and variance, or one of the images could be normalized to
the mean and variance of the other image. This technique was used by Dai and Khorram.12 Albedo
is invariant to illumination, and hence its extraction and usage is common in literature to handle
illumination variation in image registration. Phong13 uses homographic filtering to extract albedo
images.

1.2 Contributions

In this paper, we build upon our framework10 of change detection in the presence of motion blur and
rolling shutter effect by additionally handling illumination variations. To our knowledge, this is the
first work to deal with all these three phenomena in a single framework. We assume that the captured
scene is planar and is fronto-parallel to the image plane. We leverage the sparsity of camera motion
during the expsoure time within a camera pose space and the sparsity of the spatial coverage of areas
of changes. We propose a recursive procedure that adapts itself to local variations of illumination.

2. IMAGE FORMATION MODEL IN CMOS SENSOR CAMERAS

In this section, we first review the image acquisition mechanism in cameras equipped with CMOS
sensors, and then model the rolling shutter effect, motion blur, and illumination.



2.1 Image Acquisition in CMOS Cameras

A CMOS camera, similar to a conventional CCD camera, has an array of photosensors with dimensions
equal to the resolution of the camera. Each sensor collects photons which help in assigning an intensity
to every pixel. To reduce the hardware requirement involved, a common readout circuit is employed
across rows. This leads to serial acquisition of photons row-wise as demonstrated in Fig. 1. Let M and
N denote the number of rows and columns of the sensor array respectively, and te represent the exposure
time of a single row. Since the read-out circuit is common to all rows, the read-out times of any two
rows cannot coincide. Hence the starting time of the exposure period of a row is delayed by an amount
td < te with respect to that of its previous row. When the camera moves during image acquisition,
this row-wise exposure entertains a new image formation model. The values td and te are the same
for all rows during image capture. In Fig. 1, the total exposure time is given by Te = (M − 1)td + te.
If the first row starts its exposure at t = 0, then the ith row is exposed during the time interval,
(i− 1)td ≤ t ≤ (i− 1)td + te.
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(a) CCD camera (b) CMOS camera
Figure 1. Differences in exposure mechanism of CCD and CMOS cameras.

2.2 Motion Blur Model

Let f be the image captured by a CMOS camera when it is stationary. We assume that the scene is
static. The image thus recorded is clean and contains no artifacts such as blur. Let g be the image
captured by the same CMOS camera when the camera moves during the exposure time. The camera
motion is denoted by p(t), which is a six-dimensional vector corresponding to 3D translations and 3D
rotations at a particular time t. In a conventional CCD camera, this results in motion blur in which
all pixels of the observed image follow the same camera motion model. In contrast, each row of the
CMOS camera experiences a different camera motion due to the sequential exposure. Hence, each row
of the observed image embeds a unique motion blur due its own observed camera motion. We model
the observed image as

g(i) =
1

te

∫ (i−1)td+te

(i−1)td
f
(i)
p(t) dt, for i = 1 to M, (1)

where fp(t) is the warped version of f due to the camera pose p(t) at a particular time t. The superscript
(i) denotes ith row of an image.

In this work, we assume that the scene is planar and is fronto-parallel to the image plane, i.e. all
scene points are at a constant depth from the camera. In projective motion blur model,1,3, 4 the blurred
image is represented as weighted combination of multiple warps of a clean reference image. We adapt
this model to suit CMOS cameras such that each row of the distorted image is taken from different
weighted combinations of warps of the reference image. We consider a camera pose space S = {τ k},
where τ k represents a single 6D camera pose. We represent the continuous time model of (1) using
this pose space as a discrete model as given below.

g(i) =
∑

τk∈S
ω
(i)
τk f

(i)
τk (2)



where fτk
is the warped version of f due to camera pose τ k. Unlike p(t) that represents the path

of the camera motion within a row exposure, the camera pose weight vector ω
(i)
k dissolves the time

dependency and provides a non-zero weight for each camera pose proportional to the time for which
it had stayed during the exposure time. Since the row exposure times of f and g are same, we have∑

k ω
(i)
k = 1 for all i.

3. ILLUMINATION ROBUST CHANGE DETECTION

If there are changes in illumination between images f and g, (2) does not hold anymore. We model the
illumination change as a general linear operation using factors α and β. We write this general model
as

g(i) = α(i) ◦


 ∑

τk∈S
ω
(i)
τk f

(i)
τk


 + β(i) (3)

where ◦ is the element-wise multiplication operator. Each pixel of the observed image could have
unique multiplicative and additive factors. Here α(i) and β(i) denote these factors for the row i. Our
model is general and different cases of illumination variations are listed in Table 1.

Table 1. Different cases of illumination variation.
Case Global/Local Linear/Multiplicative α(i) β(i)

I Global Multiplicative a for all i 0 for all i
II Global Linear a for all i b for all i
III Local Multiplicative ai 0 for all i
IV Local Linear ai bi

Here a = [a, a, . . . , a]T and b = [b, b, . . . , b]T are constant vectors, ai = [a1i, a2i, . . . , aNi]
T and

bi = [b1i, b2i, . . . , bNi]
T are non-homogeneous vectors and they vary across rows as well. In this paper,

we handle multiplicative illumination change models (cases I and III).

In order to detect the changes, i.e. the occlusions, between the reference and observed images,
we have to account for row-wise motion blur and illumination variations. We propose an optimization
problem which simultaneously accounts for motion blur and illumination changes for every row, thereby
facilitating the detection of occlusions. We first start with the problem of change detection without
any illumination change.

3.1 Solving for Changes
To detect the changes in the scene correctly, we have to segment out the regions of only the changes
without picking other areas which are modified due to the presence of motion blur. The registration
of images by accounting for blur and detection of changes has to be done jointly. We thus model the
changes as an additive factor in (2) and rewrite it as follows:

g(i) = F(i)ω(i) + χ(i) i = 1, 2, . . . ,M, (4)

We represent (2) in matrix-vector multiplication form with an additional variable χ(i) denoting the

change vector. Each column of F(i) ∈ RN×|S| contains the ith row of a warped version of the reference
image f , for a pose τ k ∈ S, and F(i)ω(i) chooses multiple warps and combines them according to the
pose weight vector ω(i). |S| denotes the number of poses in S. We can write (4) as g(i) = B(i)ξ(i)

where B(i) = [ω(i),χ(i)]T has two parts, the first part taking care of motion blur and the second taking

care of the changes. We simultaneously solve for blur and change by solving for ξ(i). We formulate and
solve the following optimization problem to arrive at the desired solution.

ξ̃
(i)

= [ω̃(i), χ̃(i)]T = arg min
ξ(i)

{
‖g(i) −B(i)ξ(i)‖22 + λ1‖ω(i)‖1 + λ2‖χ(i)‖1

}
subject to ω(i) � 0 (5)



where λ1 and λ2 are non-negative regularisation parameters and � denotes non-negativity of each
element of the vector. `1-norm imposes sparsity constraint on number of camera poses in the whole
camera pose space and the number of changed pixels.

3.2 Handling illumination variations

In order to address global illumination changes, we consider that the energy captured by one frame is
a fraction of the energy captured by the other and thus instead of summing the weights of camera pose

vector to 1, we consider
∑
τk∈S ω

(i)
τk = γ, i.e. we refrain from enforcing a sum-to-one constraint on the

pose weight vector in (5).

For non-global illumination variations, we propose a procedure which solves for rowwise blur and
illumination to detect the changes. Many a time, while capturing aerial images, light could get partially
obstructed due to buildings, clouds, or other structures (not present in the field of view). These appear
as shadows in the image and result in scaling down of intensities of the underlying pixels leading to
local illumination variations. We handle this iteratively by recursively dividing the row into blocks
until the block has almost uniform illumination. We start by registering the entire row and calculate
the difference which includes occlusion as well as error due to illumination variations. If the number
of elements in the difference vector is greater than a set threshold, we divide the block into two. As
illumination variations are more spread out compared to the occlusion, this criterion helps us to resolve
the ambiguity between illumination variations and occlusion. We follow the same procedure for the
split blocks and continue to evaluate each block as before. In order to prevent occlusion from occupying
a major portion of the block, we limit the number of iterations by fixing the minimum block length
to Bmin. However, it is possible that there are local illumination variations even within these blocks
(which cannot be further divided) that may be wrongly detected as occlusions. To handle this issue,
we revisit the occlusion vector and assuming that the illumination variation is constant in the near
neighborhood, we apply the weights of the previous block that has been correctly aligned. This helps
aligning the portion that needs illumination correction. In the remaining pixels which are not aligned,
i.e. where the difference after applying the previous block’s weights is greater than a threshold (say
ε), there are two cases: if the difference value is high, it is assigned as an occlusion, else we align it by
estimating the motion using the following optimization problem:

min
ω

(i)
r

{
‖g(i)

r − F(i)
r ω

(i)
r ‖22 + λ1‖ω(i)

r ‖1
}

subject to ω(i)
r � 0 (6)

Algorithm 1 lists all the steps for local illumination compensation. Here gi
r represents the portion

of the reference image which needs to be realigned. The corresponding indices are picked from the row

and warped to form the columns of F
(i)
r . We use Bmin = 32 and ε = 10 in Algorithm 1 for all our

experiments.

4. EXPERIMENTS

In order to validate the performance of our technique, we show both synthetic and real experimental
results for global as well as local illumination variations. We simulate synthetic experiments over a
discrete camera path using a scale factor to introduce illumination variations and estimate pose weight
vector and occlusion vector while compensating for illumination variations.

4.1 Synthetic Experiments

In order to simulate the effect of global illumination change, we scale the intensities by a constant
which is analogous to capturing the same scene at a different instant. Since identical atmospheric and
illumination conditions cannot be ensured we emulate distortions in the form of global illumination
variations modelled as a◦ f (where a represents the scaling factor and f is the clean image). We further
introduce the effect of rolling shutter and motion blur on this image. To simulate RSMB effect, we
generate a discrete camera path of poses of length (M − 1)β + α and assign α consecutive poses to
each row with a delay of β with respect to the previous row. This assigns ith row a unique set of poses
ranging from (i− 1)β + 1 to (i− 1)β + α. Each row of the image is warped and averaged according to



Algorithm 1 Change detection in the presence of local illumination variations for ith row.

1: Initialize: block = row

2: Estimate pose weight vector ω
(i)
block and occlusion vector χ

(i)
block for block

3: Let B be the length of block

4: Calculate d = g
(i)
block − ω

(i)
blockF

(i)
block

5: Calculate k = ‖abs(d) > ε‖0
6: if k > 0.2B or p/2 ≥ Bmin then
7: Split block into two, block l and block r
8: Repeat from Step 2 for block l and block r
9: else

10: if ‖χ(i)
block > ε‖0 > 0.1B then

11: ω
(i)
block = ω

(i)
prev block

12: Realign less difference region r using (6)
13: end if
14: end if

these poses to obtain the final RSMB image. The centroid of the poses of each row acts as the actual
camera path against which our estimates are compared.

In the first example, we introduce new objects to the reference image, followed by global illumination
variation. Since, maintaining a straight path of the vehicle is very difficult while capturing aerial images,
unwanted vibrations and drifts in flying directions cause in-plane translations and rotations. We factor
these effects into consideration while designing the motion path.The image in Fig. 2(a) contains 550
rows and 750 columns. We add new objects and scale the intensity of each pixel of the image by a
factor of 0.8 for illumination variations. The resultant image is shown in Fig. 2(b). We generate a
camera path with α = 20 and β delay of 3. The centroid of tx and Rz are plotted as shown in Fig.
2(d). The RSMB image generated is shown in Fig. 2(c).

The reference image and the RSMB image are given as inputs to our method, which registers the
reference frame to the RSMB image and detects occlusions. To solve (5) we start with the middle row
as sufficient information may not be present at the boundaries of the image. We initialize a large pose
space around zero motion for the middle row: tx ranging from [−12 : 12] pixels in steps of 0.5 pixels,
ty : [−3 : 3] pixels and Rz ranging from [−5 : 5]◦ in steps of 0.5◦. The remaining rows consider pose
space around the centroid of neighboring rows. The neighborhood around this centroid is predefined;
we consider a neighborhood of 3 pixels for tx, 2 pixels for ty and 2◦ for Rz. Within the time period a
row is scanned, the camera undergoes very small motion, and hence we consider a small neighborhood
around the centroid. The sparsity of camera poses in the entire pose space and occlusion in the image is
ensured by setting regularization parameters λ1 = 5× 104 and λ2 = 103. On solving the camera poses
for each row, we get the estimated pose weight vectors and occlusion vectors. We form the registered

reference image using {F(i)ω̃(i)}Mi=1 and the occlusion image using {255 IN χ̃
(i)}Mi=1. These are shown in

Figs. 2(g) and (h), respectively. Fig. 2(i) shows the thresholded binary image. The estimated camera
trajectories for Rz and ty are shown in Figs. 2(e) and (f). Note that the trajectories are correctly
estimated by our algorithm.

In the next experiment, we consider the case of change detection in the presence of local illumination
variations, rolling shutter effect and motion blur. This effect is simulated by considering a template of
size same as that of image. It has value 1 over the entire image except in a patch where the value of the
illumination factor is 0.8. The patch considered in this experiment is a sheared rectangle representing
shadows of tall buildings falling on the scene where the camera is focused. This template is multiplied
element-wise to the occluded image to which we further introduce the effect of rolling shutter and
motion blur. We generate a camera path with α = 25 and a β delay of 3. The image obtained as a
result of these combined effects is shown in Fig. 3(c).

The clean image in Fig. 3(a) and locally illuminated RSMB image in Fig. 3(c) are given as input to
the recursive algorithm which detects occlusion while compensating for local illumination variations.
As there is no prior information about the camera motion, we consider a large pose space around the



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 2. (a) Reference image with no camera motion, (b) Reference image with added occlusions and illumination
variation, (c) RSMB image illumination variation, (d)Simulated camera path, (e) Estimated Rz camera path
(blue) overlaid on simulated camera path (red), (f) Estimated ty camera path (blue) overlaid on simulated camera
path (red), (g) Registered reference image, (h) Occlusion image, and (i) Thresholded occlusion image.

origin tx ranging from [−12 : 12] pixels in steps of 0.5 pixels and ty ranging from [−5 : 5] pixels. For the
remaining rows, a pose space defined by a neighborhood of 2 for tx and 1 for ty around the centroid of
the previous row is considered. We follow the steps in Algorithm 1 to register the row by compensating
for illumination through iterative splitting. The registered and illumination compensated image is
shown in Fig. 3(d). The occlusion has been correctly detected in Fig. 3(f).

4.2 Real Experiments

To capture real images, we use a Nexus 7 mobile phone to capture images affected by rolling shutter
effect and motion blur. In the first experiment, we consider a scene looking down from the top of
a building. The reference image is captured around noon with a static camera, whereas the second
image which contains new objects is captured during evening with an intentional handshake to emulate
aerial distortion. The reference image is shown in Fig. 4(a), and the distorted image is shown in 4(b).
Observe that the vertical line in the reference is curved in the second image. The distorted image also
has motion blur. There is visible illumination variation between the two images due to the time of
capture. These two frames are considered as input to our algorithm which compensates for illumination
variation. We choose the following pose space for the middle row registration: translations tx and ty
ranges are [−12 : 12] pixels, and rotation rz range is [−2 : 2]◦. The neighborhood for other rows
are 2 pixels for translations and 1◦ for rotation around the centroid of the estimated motion of the
neighboring row. Our method successfully estimates the motion and the registered image is shown in
Fig. 4(c). The sum of weight vector handles the illumination change row by row and is shown in Fig.
4(e). We can deduce that the illumination change in this case is almost global since the sum of weight
vector is almost same (around 0.65) for all rows. The detected occlusions are shown in Fig. 4(d).



(a) (b) (c)

(d) (e) (f)
Figure 3. (a) Reference image with no camera motion, (b) Reference image with added occlusions and illumination
variation, (c) RSMB image illumination variation, (d) Registered reference image, (e) Occlusion image, and (f)
Thresholded occlusion image.

(a) (b) (c) (d) (e)
Figure 4. (a) Reference image with no camera motion, (b) Distorted image due to camera motion and illumination
variation in the presence of occlusions, (c) Registered image by our algorithm, (d) Detected occlusions, and (e)
Adaptation of illumination change through the pose weight vector.

In the second scenario, we consider the case of a local illumination change. The captured reference
and distorted images are shown in Figs. 5(a) and (b), respectively. Rolling shutter effect can be
observed by the curved edges of the green pen and the blue box. The new red object is present under
a shadow region. A simple registration would ignore the presence of shadow and would wrongly detect
it as a change too. Our recursive illumination adaptative framework successfully registers the local
illumination changes and the camera motion, and the registered image is shown in Fig. 5(c). The
detected occlusions are shown in Fig. 5(d) and are verifiably correct yet again.

(a) (b) (c) (d)
Figure 5. (a) Reference image, (b) Distorted image due to camera motion and local illumination variation in the
presence of occlusion, (c) Registered image by our algorithm, (d) Detected occlusions.



5. CONCLUSIONS

In this paper, we considered the problem of change detection of images captured using CMOS cameras.
We formulated a joint model to handle motion blur, rolling shutter effect, and illumination variation,
and to simultaneously detect occlusions. We also proposed an algorithm to handle local illumination
variations such as shadows in the distorted image. We showed experimental results for both local and
global illumination variations with rolling shutter and motion blur distortions. Our method was shown
to be effective on both synthetic and real data.
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