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In this supplementary material, we provide additional
real results to further demonstrate the effectiveness of our
proposed RS-SR scheme. We also verify experimentally
the correctness of our implementation of the RS rectifica-
tion method in [15] 1.

S1. Real results
We show two more super-resolution results (for an SR

factor of two) for images captured using a hand-held RS
camera in Figs. S1 and S3. We follow the same notation (a-
h) for the figures as in the main paper. Zoomed-in patches
from Figs. S1 and S3 are shown in Figs. S2 and S4, respec-
tively. The RS effect is clearly visible in the red LR patches.
Observe that in both examples, the text is clearly readable
in our green SR output patch (h+).

S1.1. Implementation details

For all our real experiments, including the ones in the
main paper, we selected a large coarse 5D search space
around the middle row for the first iteration of our AM
algorithm as [−15 : 3 : 15] pixels for in-plane transla-
tions, [−3◦ : 1◦ : 3◦] for in-plane rotations, [−1◦ : 0.5◦ :
1◦] for out-of-plane rotations about the vertical axis, and
[0.9 : 0.1 : 1.1] scaling for out-of-plane translations. Such a
coarse binning of the pose space is sufficient to initialize the
algorithm because this estimate is refined with iterations.
For other rows, we chose a smaller and finer pose space
around the centroid pose of the middle row as [−3 : 1 : 3]
pixels for in-plane translations, [−1◦ : 0.5◦ : 1◦] for in-
plane rotations, [−0.5◦ : 0.25◦ : 0.5◦] for out-of-plane ro-
tations about the vertical axis, and [0.95 : 0.05 : 1.05] scal-
ing for out-of-plane translations. For subsequent iterations,
this smaller search space was selected around the centroid
pose of the previous iteration for each row. We used a fixed
value of 2500 for α in all our examples. The value of λ was
set to 100 such that a highly sparse set of camera poses are
selected from the search space. The centroid pose which

1All reference numbers are with respect to our main paper.

corresponds to the actual motion is estimated using these
selected poses.

S2. Our implementation of [15]

The technique in [15] was used to rectify the RS affected
LR frames before providing them as input to classical GS-
based SR algorithms. [15] is a state-of-the-art RS video
rectification technique that is designed to handle any gen-
eral motion of the camera. The scene is presumed to be
planar. However, the major drawback of this algorithm is
that only piecewise linear motions can be recovered. Our
method, on the other hand, does not suffer from any such
limitation and is capable of accurately estimating per-row
motion even for complicated non-linear trajectories (see the
last two plots in Fig. 4 of our main paper). Moreover, [15]
being a feature-based approach is prone to errors in motion
computation if sufficient number of features are not detected
in certain rows of the image.

To verify the correctness of our implementation of [15],
we perform the following experiment. The reference im-
age which is free from RS effect is shown in Fig. S5(a)
on which we apply uniform in-plane translatory motion to
obtain the distorted image in Fig. S5(b). The rectified out-
put of [15] is shown in Fig. S5(c). The ground truth and
estimated camera motions are shown in Fig. S5(d). It can
be seen that the method performs quite well – the estimated
camera path closely follows the ground truth trajectory, and
the rectified image in Fig. S5(c) is free from RS effect.
This confirms that our implementation is correct. An exam-
ple with non-linear motion (which violates the assumption
in [15]) is shown in Fig. S6(a). This RS image was ob-
tained by distorting the rows of Fig. S5(a) using the ground
truth camera path shown in Fig. S6(c). In this case, it can
be observed that the computed trajectory (see Fig. S6(c))
is erroneous, and there are artifacts in the rectified image
(see Fig. S6(b)). This is the reason why, in our compar-
isons, classical GS algorithms such as [17] and [18] do not
perform very well despite the pre-rectification step.
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Figure S1. Real example: Building 1.



(a1+) (a2+) (a3+)

(b+) (c+) (d+) (e+)

(f+) (g+) (h+)

(a1+) (a2+) (a3+)

(b+) (c+) (d+) (e+)

(f+) (g+) (h+)

Figure S2. Zoomed-in patches from Fig. S1.



Figure S3. Real example: Building 2.
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Figure S4. Zoomed-in patches from Fig. S3.

S3. Implementation of [7]

We have compared our result with the single-
image SR technique in [7]. Since the au-
thors of [7] have not made their code publicly
available, we used the code downloaded from
http://web.stanford.edu/class/ee368/
Project 11/ for comparison. This is an im-
plementation of the method in [7] by Arora and
Kolte. The details can be found in their report

https://stacks.stanford.edu/
file/druid:my512gb2187/
Kolte Arora Image Superresolution.pdf
where the authors have claimed that their implementation
produces results identical to those reported in [7].



(a) Reference image. (b) RS image.

(c) Rectified using [15]. (d) Camera trajectory.

Figure S5. Rectifying linear motion using the method in [15].

(a) RS image. (b) Rectified using [15].

(c) Camera trajectory.

Figure S6. Rectifying non-linear motion using the method in [15].


