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Abstract—Temporal artifacts due to sequential acquisition of
measurements in compressed sensing manifest differently from
a conventional optical camera. We propose a framework for
dynamic scenes to estimate the relative motion between camera
and scene from measurements acquired using a compressed
sensing camera. We follow an adaptive block approach where the
resolution of the estimated motion path depends on the motion
trajectory. To underline the importance of the proposed motion
estimation framework, we develop a face recognition algorithm in
the compressive sensing domain by factoring in the time-varying
nature of the acquisition process.

I. INTRODUCTION

Dimensionality reduction techniques have been widely
used in signal classification. Methods such as PCA , LDA and
ICA [1] extract unique information about signals based on their
underlying structure. Recently, random projection (RP) [2],
[3], [4] has generated interest for reducing the dimension of a
signal. These features are generated by projecting a signal onto
a low dimensional subspace using a random matrix. The result
of Johnson-Lindenstrauss lemma [5] shows that RP preserves
the geometric structure of a set of signals such as pairwise
distances in lower dimensions. A natural extension of the
lemma to preserve volumes and affine distances is shown in
[6]. The preservation of geometric features makes RP valuable
in signal classification problems. RP is data independent unlike
traditional dimensionality reduction methods and is compu-
tationally advantageous [7], [8]. Classification using nearest
subspace classifier, sparse classifier and group sparse classifier
is shown to yield robust results when using random projections
[9].

Recently the theory of compressed sensing (CS) [10], [11]
has kindled new directions in the very act of image acquisition.
CS-based imaging can be exploited in a number of areas
such as MRI, infra-red imaging and hyperspectral imaging.
Single-pixel camera is a striking example of CS [12]. This
new mechanism of acquisition allows one to capture random
projections of a scene directly instead of generating random
features from the captured images. Sensor cost is a major con-
cern when operating in non-visible wavelengths such as infra-
red and hyperspectral imaging. Compressed sensing comes to
the rescue here as it involves only one sensor as opposed
to an array of sensors. Cameras equipped with these sensors
can be very effective in surveillance scenarios. Recognition
systems based on compressed sensing measurements provide
the additional benefit of capturing, storing and transmitting (if
needed) only a few values compared to conventional image-
based recognition systems.

Although skipping over an entire step is enticing, there
are hidden costs in acquiring random features directly. These
random feature measurements cannot be gathered at one
instant of time, but have to be captured sequentially. This
can introduce temporal artifacts in the acquired measurements
which pose problems during inference. We demonstrate this
in Fig. 1 by reconstructing images from four different CS
measurement vectors when the scene undergoes horizontal
translations during 12.5%, 25%, 50% and 75% of capture time.

Fig. 1. Illustrations of deterioration of image quality when there are temporal
artifacts during CS acquisition. Left to right: Reconstructed images when there
is motion during 12.5%, 25%, 50% and 75% of capture time.

In this paper, our focus is on handling temporal artifacts
primarily from a classification perspective. In [13], a maximum
likelihood classifier, dubbed as smashed filter, is discussed
for the compressive classification problem. The test measure-
ment is considered to be the compressive measurement of a
gallery image with unknown translation or rotation. In [14],
compressive measurements are acquired with various image
resolutions and a multi-scale version of the smashed filter is
developed for classification. In the above works, compressive
measurements of all possible translations (finite intervals up to
a certain bound) and rotations (finite steps from 0◦ to 360◦) are
acquired and stored as gallery data. In [13], the most likely
rotation angle for each class is estimated by computing the
nearest neighbour from each class followed by nearest neigh-
bour classification. In [14], Newton’s descent method starting
with a random initial estimate is applied by computing the
gradient using the acquired gallery compressive measurements
to estimate the rotation, and classification is performed using
nearest neighbour approach. The use of random projections
for face recognition has been previously demonstrated in [15]
and [16]. But articulations that might be present in the scene
during acquisition were not considered.

Our contributions in this paper are as follows:

• We first propose a framework to estimate the continu-
ous relative motion between camera and object during
acquisition of compressive measurements. We assume
that a reference compressive measurement is available
which is typical in a classification scenario.



• We demonstrate the utility of this framework for the
face recognition problem by generating CS data with
different types of motion on images in FERET face
database [17].

Unlike earlier works on scene classification based on CS
measurements [13], [14], we unravel the complete motion
during acquisition instead of estimating a single warp. We also
do away with the requirement of storing CS measurements
for every possible articulation of the scene as gallery data.
We store only one compressive measurement per class for
recognition.

This paper is organised as follows. In section II, we briefly
discuss the theory of compressed sensing. In section II-A,
we dwell on temporal artifacts in compressive acquisition.
Section III demonstrates algorithms to estimate motion from
CS measurements, and section IV details face recognition as an
application of our motion estimation framework. Experiments
are detailed in section V before concluding in section VI.

II. COMPRESSED SENSING

Compressed sensing renders the possibility of acquiring
less data and getting more information. This is possible by
making use of the sparse underlying structure of images.
Natural images are typically sparse in some transform domain
such as wavelets. The acquisition takes place in the form of
random projections of the image. We take M measurements
of an image, represented in vectorised form as x ∈ RN with
M � N , as M inner products with random vectors. Suppose
Φ ∈ RM×N is a matrix which contains M random vectors
{φi}Mi=1 ∈ RN as its rows. The measurement vector y ∈ RM

is represented as

y = Φx, (1)
i.e. y[i] = 〈x,φi〉 ∈ R, for i = 1, . . . ,M.

Recovering x from y is an ill-posed problem. But exploiting
the sparsity of x, we can reconstruct it by

x = Ψα̂

α̂ = arg min
α
‖α‖1 subject to y = Φx and x = Ψα. (2)

Here Ψ is a transform basis and α contains the transform
coefficients of x in Ψ. x is K-sparse in Ψ meaning there are
only K significant elements in α. With this assumption, it is
possible to reconstruct x using only M = O(K log (N/K))
measurements [10], [11]. `1 minimisation in (2) can be solved
by a variety of methods. In this paper, we use the spectral
projected-gradient algorithm of [18], [19].

Compressive acquisition imaging devices such as the single
pixel camera [12] employ the above compressive sensing
mechanism. A typical single pixel camera has a plane of
electrostatically controlled digital micromirror device (DMD)
array. Each random vector φi can be configured on the DMD
plane as a matrix of random ones and zeros. A focusing lens
directs the light from the scene onto the DMD plane. Then
the random subset of mirrors configured with ones will focus
the light onto a single photon detector, which measures the
value of the required inner product value, thus yielding a
scalar measurement y[i]. The complete measurement vector y
is captured by running through all random vectors {φi}Mi=1.

A. Space-time tradeoff

Reduction in the number of photon detectors comes at
a price. At any instant of time, the micromirror array can
be arranged with only a single configuration. Hence, only
one inner product measurement can be obtained at any point
of time. Measuring M inner products requires changing the
mirror configuration sequentially in time, one for each random
configuration, and detecting the value at the photon detector
for each configuration.

Serially measuring the required values for a scene admits
the possibility of scene change during capture time. One
measurement may see a different scene from another. This
could be due to, for example, relative motion between camera
and scene, moving objects, illumination changes etc. In this
paper, we confine ourselves to relative motion between camera
and scene. In a conventional camera, scene changes during
the exposure time will cause an averaging effect (blur) in the
resultant image. In compressive acquisition, each measurement
is independent of the other in the sense that they are captured
at different times (though only a few instants apart). Hence,
each measurement is individually affected by the changes in
the scene. The scalar measurement y[i] at the ith instant is
measured as the inner product of the random configuration φi
and the scene xi observed by the camera at that instant.

y[i] = 〈xi,φi〉 and xi ∈ S(x) for i = 1, . . . ,M, (3)

where S(x) is the set of all variations of the scene seen
by the camera due to relative motion during acquisition of
measurements. We treat S(x) as the set of all affine variations
of a latent image x, with each affine variation represented by
a six-dimensional vector1.

Any attempt to reconstruct x using (2) when there is scene
change during acquisition will result in loss of quality as
demonstrated earlier in Fig. 1. When the percentage of mea-
surements corresponding to translated versions of x increases,
the quality of the reconstructed image deteriorates. Note that
the image in Fig. 1 is considerably noisy even when only
12.5% measurements are affected. Thus, handling temporal
motion artifacts is an important problem in CS.

III. MOTION ESTIMATION FROM COMPRESSED
MEASUREMENTS

In this section, a motion estimation algorithm given two
compressed sensing measurement vectors is discussed. Sup-
pose we have two vectors of CS measurements, y and yp,
with y corresponding to a planar scene with no motion of the
camera or the scene, and yp corresponding to the same scene
but with camera motion during the time of acquisition. Let the
length of each vector be M . They are acquired using the same
projection matrix Φ ∈ RM×N . Let the underlying images
corresponding to the two compressed sensing measurements
be x and xp, respectively. Both are vectorised forms of the
corresponding images with N pixels.

1Co-ordinate transformation using an affine parameter vector p ∈ R6 is

given by
[
m′

n′

]
=

[
p[1] p[3] p[5]
p[2] p[4] p[6]

]

m
n
1


.



Each element yp[i] can potentially experience a differently
warped version of the scene. We denote the warped image
corresponding to yp[i] as xpi

, where pi ∈ R6 is the ith affine
parameter vector. Therefore, we have

yp[i] = 〈xpi ,φi〉, i = 1, 2, . . . ,M. (4)

We need to estimate the parameter vectors {pi}Mi=1 to get the
complete camera motion.

A. Warp estimation

Before discussing how to estimate the camera motion, we
first consider the special case of estimating a single unknown
warp between two compressed sensing measurements. Let
x ∈ RN denote the vectorised form of an image, where
N is the number of pixels in the image. Let y ∈ RM be
its compressed sensing vector using the projection matrix
Φ ∈ RM×N , such that y = Φx. Now consider another
compressed sensing vector yp with yp = Φxp where xp is
the warped version of x with affine parameters p ∈ R6. Our
task is to estimate p given y and yp.

We note that a set of affine transformed images (with N
pixels) of the same scene forms a six dimensional manifold
M in RN . Suppose images x1 and x2 are points on this
manifold M. If Φ is an orthoprojector from RN to RM , then
the projections of all images in the affine set using Φ will
form another manifold ΦM [13]. The vectors y1 = Φx1 and
y2 = Φx2 are points on this manifold ΦM. For

M = O(d log (µNε−1)/ε2) < N, (5)

where µ depends on the properties of the manifold such as
volume and curvature, d is the dimension of the manifold,
and 0 < ε < 1, the following holds with high probability [20]:

(1− ε)
√
M

N
≤ ‖Φx1 −Φx2‖2

‖x1 − x2‖2
≤ (1 + ε)

√
M

N
. (6)

In our case, to estimate the unknown warp p from the
images x and xp, we could develop a descent algorithm by
iteratively updating the parameter vector p̂ starting with an
initial estimate such that the residual energy ‖xp − xp̂‖22
decreases in each iteration, and p̂ converges to p [21]. We
now discuss the possibility of developing such an algorithm
if only the compressed measurements are available. From (6),
we have

λ1‖xp − xp̂‖22 ≤ ‖Φxp −Φxp̂‖22 ≤ λ2‖xp − xp̂‖22 (7)

for some constants λ1 and λ2. To estimate the warp p from
the vectors y and yp, a similar descent algorithm can be
formulated such that at each iteration, the residual energy
‖Φxp − Φxp̂‖22 is reduced. The monotonic decrease of this
residual energy depends on the value of M . For ε ≈ 0, we
have λ1 ≈ λ2, and in this case, we have

‖Φxp −Φxp̂‖22 ≈ λ‖xp − xp̂‖22 (8)

for some constant λ. Hence a monotonic decrease of resid-
ual energy is assured with high probability. For ε ≈ 1,
‖Φxp −Φxp̂‖22 can take values in a larger neighbourhood
around ‖xp − xp̂‖22 since λ1 6= λ2 from (6). Hence the

residual energy may diverge or exhibit an oscillatory behaviour
in this case and the algorithm will not converge. Therefore, we
have to choose M sufficiently large to ensure that the algorithm
converges since M ∝ (log ε−1)/ε2 = O(1/ε2).

We approximate xp using Taylor series expansion, and
derive the relation between yp and y.

xp = x + D(∇x) p + ex

where uth row of D(∇x) is given by,

D(∇x)[u, :] = ∇x[u, :] J(u), for u = 1, . . . , N.

Here ex is the error vector after approximation, ∇x ∈ RN×2

contains the horizontal and vertical gradients of x in its
columns, ∇x[u, :] ∈ R1×2 denotes its uth row, and J(u) ∈
R2×6 is the Jacobian of the affine transformation at the co-
ordinates corresponding to index u. Now,

yp = Φxp

= Φ(x + D(∇x) p + ex)

= y + Φ D(∇x) p + ey

where ey = Φex is the residual vector. The parameter vector
p can be sought by minimising the `2-norm of the residual.

p̂ = arg min
p
‖ey‖2

such that yp = y + Φ D(∇x) p + ey

(9)

This minimisation is solved by a steepest descent algorithm.
An iterative scheme is posed to estimate p incrementally by
descending towards the minimum residual energy as given in
Algorithm 1.

Algorithm 1: (p̂, e) = estimate motion(yp,y,Φ)
Initialise p̂ = [1, 0, 0, 1, 0, 0]T

Determine x from y using (2).
repeat

- Warp x and ∇x by p̂ to get xp̂ and ∇xp̂ respectively
- Calculate descent matrix, S = Φ D(∇xp̂) ∈ RM×6

- Calculate Hessian, H = STS ∈ R6×6

- Calculate ŷ = Φ xp̂

- Calculate ∆p = H−1STey

- Update p̂ = p̂ + ∆p
until p̂ converges
return p̂ and residual energy ‖yp − ŷ‖22
We note here that the classification algorithm discussed in

[14] necessitates capturing of CS measurements of all possible
warps of the reference image. In our algorithm, we use the
image domain information obtained from the single reference
vector.

B. Block-wise estimation

We now proceed to estimate the complete camera motion
path {pi}Mi=1 experienced by the measurement vector in (4).
We note that (i) camera motion during acquisition is smooth
and, (ii) a typical single pixel camera has a mirror flipping
rate of 32kHz [22], i.e. a single measurement will consume
3ms. Hence it is not invalid to assume a constant warp for
contiguous B scalar values in yp for small values of B, say 25.
But the same assumption of constant warp cannot be assumed



for the complete measurement vector yp, since a large number
M of measurements will consume sufficient time on the whole
to violate this assumption and the camera would have viewed
different warped versions of the scene. Let yb

p denote a specific
sub-vector or a block of yp i.e. yb

p = yp[k :k+B−1] for some
k ∈ [1,M −B + 1].

We have yb
p = Φbxpb , where Φb contains B rows of

Φ corresponding to the indices k to k + B − 1 denoted
by Φ[k :k+B−1, :] and pb is the motion parameter vector
corresponding to this block yb

p. Now we estimate the warp
parameter for this block using Algorithm 1. We use Φb

instead of Φ. To estimate the camera motion for the complete
measurement vector yp, we follow an adaptive block-size
approach.

We seek a method to divide the vector into blocks of
varying size based on the camera motion. We first consider
the given vector yp as one block, as the root, and estimate
the motion parameters. If the resultant error is greater than
a pre-specified threshold τ , then we split the vector into two
equal blocks as its children and repeat this process for each
block. This is continued till the residual error in all blocks
becomes less than the threshold τ . This is a binary tree
traversal approach from root to leaves. If we go on traversing
down the tree, at some point, the error might increase since
the block-size at that level may not be sufficient to estimate
the parameters. Hence we put a condition on the minimum
size of the block. This method is described in Algorithm 2.

Algorithm 2:(
{p̂(j)}, {e(j)}

)
= recursive estimator(yp,y,Φ)

Let L = length(yp), j = 0
(p̂, e) = estimate motion(yp,y, Φ)
if e > τ and L ≥ 2Bmin then

recursive estimator(yp[1:L2 ],y,Φ[1:L2 , :])
recursive estimator(yp[L2+1:L],y,Φ[L2+1:L, :])

else
j = j + 1
return p̂(j) = p̂ and e(j) = e

end if

The algorithm follows a pre-order traversal binary tree
approach. The output parameter vectors {p̂(j)}Qj=1 and the
residual errors {e(j)}Qj=1 in Algorithm 2 are numbered with
respect to this traversal, where Q is the total number of
resultant blocks. For the original block yp, during the first
iteration, L = M . Then, for its children L becomes M/2
and so on. The total number of blocks that the algorithm will
result in depends on the motion of the camera. If there is
no camera motion, then the algorithm will stop after the first
iteration itself since the motion vector will have been correctly
estimated and the residual error will be close to zero. In this
case Q = 1. In the worst case, the algorithm will proceed till
sizes of all the blocks reach Bmin. Here Bmin is the minimum
block length limit, which is a user-defined parameter. In this
case, Algorithm 1 is invoked recursively a total of Q = 2nB−1
times, where nB = M/Bmin is the total number of resultant
blocks.

As an aside, we would like to mention that it is also

possible to use a fixed block-size. Fixed block processing
encourages parallel processing since estimation of motion
parameters of a block is independent of the others. We can
formulate an approach by dividing the vector evenly into same-
sized blocks and process them in parallel in a multi-core
environment. The block-size should not be too small else it
would render the motion estimation ill-posed or converge to a
local minimum. It should not be too large either so as to not
violate the assumption of constant motion within a block.

IV. COMPRESSIVE CLASSIFICATION

As a specific application of the framework that we have
designed thus far, we consider the development of a face
recognition system employing a compressed sensing camera.
The gallery, G, contains CS measurements of C faces, with
one measurement vector for each face. These are measured
using the projection matrix Φ. During the testing phase, the CS
measurement of the test face is acquired using a compressive
acquisition device using the same projection matrix Φ. The
classifier should identify the correct gallery face to which the
test face belongs.

Compressed measurements of the gallery faces are ac-
quired in a controlled environment where there is no relative
motion between camera and face. However, during the testing
phase, there could be relative motion between camera and
scene. We model this relative motion by an affine transfor-
mation. Let gc denote a vectorised gallery image. If yc is its
compressed measurement vector, then

yc = Φgc for c = 1, . . . , C (10)

where gc ∈ RN , yc ∈ RM and Φ ∈ RM×N . Let yt denote
the compressed sensing measurement vector of the test face.
It is the projection of a time-varying underlying test image t,
i.e. each scalar value in yt sees a different warp of t.

yt[i] = 〈tpi ,φi〉, i = 1, 2, . . . ,M (11)

where pi ∈ R6 is the affine parameter vector at the time of
acquisition of ith test measurement value and tpi

represents
the affine transformation of t using the parameter vector pi.

In a classification scenario, the collection of gallery data is
a one-time process which is performed before the system is put
to use. Hence, it is certainly valid to assume that the gallery
vector has sufficient length to enable the availability of image
domain information using (2). In the testing phase, for example
in real-time surveillance systems, only few measurements of
the test vector are captured and transmitted to the server to
perform recognition.

During the classification phase, camera motion between
the test vector and each gallery vector is estimated. We follow
the adaptive block-wise estimation process discussed earlier.
The test vector is assigned to the gallery c which results in
minimum mean residual error, ec, i.e.

c∗ = arg min
1≤c≤C

{ec}, where ec =
1

M

Q∑

j=1

e(j)c (12)

and j = 1, . . . , Q represents the block number in Algorithm 2.



V. EXPERIMENTAL RESULTS

In this section, we demonstrate the results of our motion
estimation algorithm. We show how our algorithm adaptively
chooses the block-size based on camera motion. Next, we
tabulate our face recognition results for images in FERET
database. We performed experiments to estimate a single warp
between two compressed sensing measurement vectors and
observed that the number of measurements needed to estimate
motion increases with the number of motion parameters (such
as translation, scaling) involved. This can be attributed to the
fact that the number of measurements M in (5) is dependent
on the dimension of the manifold. Based on these experiments,
we choose the minimum block limit Bmin in Algorithm 2 to
be 25 in all our experiments below. We choose the threshold
τ in Algorithm 2 to be 0.01. We use scrambled Hadamard
ensemble [23] as the projection matrix Φ.

A. Continuous motion estimation

We first perform experiments to demonstrate the estimation
of continuous camera motion. We generated CS measurements
for a randomly selected face image x of size 64×64 from the
FERET face database and stored this vector as the reference
measurement vector y. To demonstrate the effectiveness of our
adaptive block-size estimation, we consider a scenario where
camera or object translates in the horizontal direction during
acquisition. Then, we estimate the motion using our adaptive
method (Algorithm 2). Fig. 2 contains illustrations of this
scenario. The x-axis represents the measurement number or
synonymously, time, and the y-axis represents the horizontal
translation in pixels. In Fig. 2(a), we show a simple case of
constant horizontal warp, where all measurements are affected
by the same motion. Algorithm 2 is expected to stop after
the first iteration itself since the error will be less than the
threshold. The whole test vector is, in fact, considered as a
single block. In Fig. 2(b), there is linear motion; the object
as seen by the camera moves from left to right. Algorithm 2
divides the vector into equal sized blocks due to continuous
motion, and determines the motion for each block in this
case. Fig. 2(c) shows how the block-size changes when
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Fig. 2. Illustrations of motion estimation using adaptive block-size approach
for (a) constant warp, (b), (c) horizontal linear motions, (d), (e) and (f)
horizontal oscillatory motions. X-axis indicates the measurement number and
Y-axis indicates the horizontal translation of the camera in pixels. Red line
indicates the real motion of the camera for all measurements. Vertical shading
indicates blocks and blue circle is the estimated motion for each block.

Fig. 3. Different 2D translation camera motions (red line) during CS
acquisition generated using a second order conic with random coefficients.
Estimated camera motion (blue circles) using Algorithm 2.

movement stops in-between. The algorithm considers the static
measurements as a single block and divides the remaining
measurements into multiple blocks. In Figs. 2(d), (e) and
(f), we show motion estimation when the object oscillates
between left and right with varying speed. The vector is
divided into multiple blocks of different sizes based on the
speed of object motion. Fig. 2(f) shows the extreme case when
object oscillates at high speed initially and then stops. Block-
sizes are automatically chosen cleverly based on this motion.

Next, we simulated the camera motion as smooth 2D
translations using a second order conic with random coeffi-
cients. Fig. 3 shows estimated camera motion for different
motion paths using Algorithm 2. The red line indicates the
actual camera motion while blue circles indicate the estimated
motion. Our algorithm follows the camera path correctly and
estimates continuous camera motions very well.

B. Face Recognition

As a possible application of the proposed framework for
classification scenarios, we consider the very relevant problem
of face recognition. We demonstrate recognition results for
face images in the well-known FERET database [17]. We use
the ba directory in the database which contains uniformly lit
frontal images of 200 persons, with one image per person. We
use images of size 64×64. We generate one CS vector for each
person and store them as gallery measurement vectors. During
the testing phase, we take a gallery image, add Gaussian noise
of standard deviation 0.01, warp it with motion parameters and
generate the test CS vectors. We perform recognition on this
test vector using (12). This is repeated for all 200 images in
the database by considering them as test images one at a time.
We consider four cases of possible motion: in-plane translation
(tx, ty), in-plane rotation (rz), in-plane translation and rotation
(tx, ty, rz), and general affine motion. The range of parameters
used are: (tx) ∈ [−10, 10] pixels, (ty) ∈ [−10, 10] pixels and
(rz) ∈ [−5◦, 5◦] for the first three cases, and first four affine
parameters in the range ±[0.8, 1.2] and the last two being same
as translation parameters for the general affine motion.

Firstly, we consider a constant warp throughout the acqui-
sition. This is the scenario where there is no motion during test
vector acquisition, but the observed face image during testing
is a warped version of one of the images in the gallery. Here
the motion parameters are estimated considering the test vector
as a single block. The test vector is assigned to that gallery
vector which gives the minimum residual error after motion
estimation. The results are given in Table I. The recognition
rate increases with the number of measurements as expected,
since the motion estimation accuracy improves. The number
of free parameters also plays an important role in classification
accuracy as can be seen in Table I.



Next, we consider smooth motion of camera during acqui-
sition of the test vector of length M = 200. Recognition is
performed using the adaptive block-size approach (Algorithm
2). Table II shows the recognition rates. The adaptive block-
size approach performs quite satisfactorily across different
types of camera motion. This can be noted from the table
which reveals good recognition rates. Also to be noted is that
a simple minimum distance classifier between gallery and test
compressive measurement vectors without estimating motion
results in poor recognition accuracy. We also performed recog-
nition using fixed block-size approach and observed that the
recognition rate depends on the chosen block-size which is its
flip-side.

TABLE I. RECOGNITION RESULTS (IN %) ON FERET DATABASE FOR
CONSTANT WARP DURING ACQUISITION

Type of motion M = 20 M = 25 M = 50 M = 100
(rz) 87.0 89.5 95.5 97.0

(tx, ty) 85.5 86.5 95.0 96.0
(tx, ty, rz) 85.0 87.0 92.0 95.0

Affine 72.5 79.0 83.5 87.0

TABLE II. RECOGNITION RESULTS (IN %) ON FERET DATABASE FOR
CONTINUOUS CAMERA MOTION DURING ACQUISITION

M = 200
Type of motion Adaptive No motion estimation

(rz) 93.5 55.0
(tx, ty) 95.5 52.5

(tx, ty, rz) 95.0 53.0
Affine 88.0 48.5

(Continued) M = 200 (fixed block-size)
Type of motion B = 25 B = 50 B = 100 B = 200

(rz) 95.5 93.0 94.0 66.0
(tx, ty) 94.5 96.0 93.0 63.5

(tx, ty, rz) 94.5 96.5 93.5 63.0
Affine 70.0 82.5 87.5 54.5

VI. CONCLUSIONS

In this paper, we proposed an algorithm to estimate rel-
ative motion between camera and scene during acquisition
of compressed sensing measurements. We discussed how a
descent algorithm can be formulated to estimate the motion
parameter vector from these measurements. We demonstrated
the utility of our motion estimation framework in the CS
domain for the face recognition problem and gave several
results on the FERET database. Our approach opens up the
general possibility of harnessing temporal motion in com-
pressive recognition systems. As future work, we plan to
simultaneously estimate motion and reconstruct the underlying
image given only a single compressed sensing measurement
vector. Another interesting direction to pursue would be to
examine how efficiently random projections can be utilised as
features for recognition of images captured by a conventional
optical camera when there are motion blur artifacts.
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